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Disentangling resolution, precision, and inherent stochasticity in nonlinear systems
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Reliable measurement, simulation, and analysis of dynamical systems rely on appropriately bounded un-
certainty. Errors that lead to uncertainty naturally arise from finite precision or resolution, but an additional
unappreciated source of uncertainty is the effective stochasticity associated with nonlinear dynamics. Here
we describe and quantify the interplay between these three sources of uncertainty using a recently developed
framework known as stochastic sensitivity theory. Using fluid mixing as a test case and considering data from
an analytical flow, a laboratory experiment, and geophysical observations, we show how to delimit regimes that
are limited by finite resolution or by inherent stochasticity. We arrive at the surprising conclusion that in some
cases, refining the resolution of a measurement or simulation can actually be counterproductive and lead to an
outcome that is less faithful to the true dynamics. Our results have significant implications for the measurement
and analysis of nonlinear systems.
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I. INTRODUCTION

Nonlinear systems are inherently more challenging to
handle than their linear counterparts. Nonlinearities tend to
amplify tiny differences in initial and boundary conditions
as well as the effects of noise, making them prone to in-
stability and chaos. These issues can be even more severe
in spatially extended nonlinear systems, where the effects of
the nonlinearities are often highly spatially nonuniform, or
when the time evolution of the system is desired, where the
effects can compound multiplicatively. These difficulties are
also endemic in every mode of scientific inquiry. Nonlinear
systems often defy analytical solution; they require special-
ized, computationally expensive algorithms to handle numer-
ically; and they place stringent constraints on experimental or
observational resolution and measurement accuracy.

Given all of these difficulties, it is often not clear how
best to design empirical studies of nonlinear systems, whether
numerical, experimental, or observational, to achieve optimal
fidelity given inevitable constraints. We can distinguish three
logically distinct sources of potential error that must all be
accounted for in this design process. First, error can come
from limited resolution. Processes that occur, for example, on
length scales smaller than the grid size in a computational
simulation do not exist in the numerical results; and even
though experiments contain all of the proper physics, the
impacts of processes on scales smaller than the experimental
resolution may be improperly accounted for. Second, errors
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can arise due to limited precision. Such errors can come from,
for example, the finite accuracy of numerical methods or mea-
surement errors in experiments. And finally, effective errors
can arise from the inherent dynamics of the system—that is,
from dynamical effects from the equations of motion that lead
to effective stochasticity that will be present for any finite
resolution or precision. The well-known extreme sensitivity to
tiny changes in initial conditions in chaotic dynamical systems
is an example of this [1]. A well-designed empirical study
must confront all of these sources of error and weigh them
appropriately. However, this can be difficult to do a priori; in
particular, the interplay of the inherent nonlinearity due to the
dynamics and the potentially controllable effects of resolution
and precision has received little attention.

Here, we present a framework for disentangling and an-
alyzing these interwoven effects in computations using spa-
tiotemporal data, using the recently developed stochastic sen-
sitivity theory [2]. We illustrate our results using examples
drawn from fluid mixing, a canonical nonlinear problem that
displays all of the challenges discussed above and that has a
wide range of important applications [3]. Studies of mixing
start from the Eulerian fluid velocity field, which is governed
by the Navier–Stokes equations; when the Reynolds number
is large (as is the case in most flows of industrial or envi-
ronmental interest), these equations are highly nonlinear. But
since mixing is fundamentally a question of how material is
transported by the flow, it is natural to consider it from a
Lagrangian perspective instead by studying the trajectories
followed by material parcels [4]. These trajectories are com-
puted by integrating the velocity field in time, and so even
small errors in these fields can compound multiplicatively and
produce large deviations [5]. It is thus natural to try to increase
both resolution and precision as much as possible to enable
the best possible computation of the trajectories. However,
such an approach ignores the inherent unpredictability in the
problem, which arises from both the nonlinear complexity
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resulting from the dynamics generated from the data, and
fact that the data itself possesses uncertainties. Here, we
demonstrate that because of this inherent unpredictability, in
some limits increased resolution and precision not only does
not help but can in fact counterintuitively hinder our ability to
construct accurate trajectories.

We illustrate the use of our theoretical framework with
three examples. First, we describe a canonical model flow,
the double gyre, that has become a standard testbed for
studying coherent structures [4,6,7]. In this case, we have full
knowledge of the flow field, and so can independently study
the effects of resolution, precision, and dynamics. Next, we
consider a laboratory realization of two-dimensional turbu-
lence, where the nonlinearities are stronger and the flow is
not a priori known. In this case, the resolution is very high,
but measurement error is unavoidable and is typically tacitly
considered to be the main limitation. Finally, we analyze
observational flow data from the Gulf of Mexico, where finite
resolution is usually assumed to be the limiting factor.

II. STOCHASTIC SENSITIVITY

For our investigation of nonlinearity, precision, and reso-
lution, we apply tools from a recent theoretical development
in stochastic differential equations that we term stochastic
sensitivity theory. The details of this theory, including proofs
of its main conclusions and guarantees of computability, are
set out in Ref. [2]. Here, we only lay out the essential ideas and
notation necessary for our context; further details are given in
Appendix A.

The central question addressed by the theory in Ref. [2] is
how to account for the effects of error on the solution trajec-
tories of nonlinear systems given by the ordinary differential
equation(s),

ẋ = u(x, t ). (1)

In the fluid flow examples we will focus on here, u should be
interpreted as the Eulerian velocity field that is a solution of
the Navier–Stokes equations. However, nothing in the theory
rests on the details of fluid mechanics, and so the results
are generalizable. Formally, the governing ODE admits the
solution

Ft
0(x) = x +

∫ t

0
u
(
Fτ

0 (x), τ
)
dτ, (2)

where Ft
0(x) is the flow map that transforms an initial con-

dition x at time 0 to its location at time t under the action
of the flow u. This integral should be interpreted as a path
integral that is evaluated along the solution trajectory. This
formal solution, however, makes the implicit assumption that
knowledge of u is perfect and error-free, which will never
be the case in any practical situation. An actually observed
solution yt would therefore be different from Ft

0(x). Treating
the error in the velocity as random, the idea in Ref. [2] is to
write yt as the solution of the stochastic differential equation

dyt = u(yt , t )dt + εdWt , (3)

where ε is a positive nondimensional parameter that expresses
the expected level of error and dWt is the (vector) Wiener
process. The impact of the Eulerian velocity errors on the

Lagrangian locations is then encapsulated in the statistics of
the random variable

zε(x, t ) = yt − Ft
0(x)

ε
. (4)

Of particular interest is the limit ε → 0, which captures the
inherent amplification of infinitesimal uncertainty due to the
nonlinear dynamics of the system. Such effects will be present
for any nonzero error, no matter how small.

Since zε can be oriented in any direction relative to the true
location Ft

0(x), Ref. [2] considers the projection of zε onto a
general unit vector n̂, labeled here as Pε(x, t, n̂). Stochastic
sensitivity is defined as the maximum variance of the set of all
Pε in the limit ε → 0; that is,

S2(x, t ) ≡ lim
ε→0

sup
n̂

var [Pε(x, t, n̂)]. (5)

S2 has units of area, so that
√

S2 is a length. Defined in
this way, S2 is a scalar field that takes a value at each posi-
tion x in the domain of interest. Importantly, this seemingly
complicated expression for S2 is nonetheless explicitly com-
putable for any given velocity data without having to perform
stochastic simulations; Appendix A details this computation,
derived in Ref. [2]. The S2 field encapsulates the interaction
between the nonlinearity in the data—which can generate
spatially varying unpredictability à la chaotic systems—and
the inherent uncertainty in the data itself in quantifying the
uncertainty in the eventual Lagrangian location.

We now adapt this theory to investigate the role of the
resolution length scale. Going back to the definition of zε,
we can argue that, to leading order, the size of the deviation
between our estimate of the solution to the governing ODE
and the true solution will be LS (x) ≡ ε

√
S2; note that LS is

still a length scale, since ε is nondimensional. Additionally,
since S2 depends on x, LS (x) is in fact a field on the particle
locations at time 0, and can vary strongly between different
regions of a dynamical system.

Next, we observe that regions of the flow field with small
S2 will be highly robust to errors, since the product ε

√
S2

can remain small in those cases even when ε is on its own
relatively large. But more usefully, it allows us to draw infer-
ences about the required resolution with which we must know
the velocity field as well as how much we can trust different
features we observe. In many cases, the error ε is more or less
spatially uniform and is set by the measurement technique
(for an experiment) or the accuracy of a numerical scheme
(for a computational model). In that case, we can directly
compare the available spatial resolution LR of the field—either
the typical distance between measurement locations in an
experiment or the grid spacing in a simulation—with LS (x).
In regions where LS < LR, the uncertainty engendered from
the dynamics—incorporating the uncertainty in the Eulerian
velocity field—is smaller than the spatial resolution. Thus,
finite spatial resolution is the dominant factor that controls our
ability to reconstruct proper solution trajectories, and we say
that we are resolution limited. In resolution-limited regions
of the flow, increasing the spatial resolution will improve
our estimate of the dynamics. However, when LS > LR, the
dominant factor that determines the quality of our estimate
is the inherent uncertainty in the dynamics, and we say that
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we are stochasticity limited. In this case, enhancing the spatial
resolution does not improve our ability to estimate solutions,
because the uncertainty from the dynamics, LS , dominates.

Optimally, we argue that one wants to choose LR ≈ LS .
In this case, the resolution is sufficiently high that it is not
a limiting factor. But, as we show below, increasing the
spatial resolution by making LR � LS is not only not helpful
but actually counterproductive, since in that case one finely
resolves the inherent unpredictability in the system and allows
it to influence the solutions multiplicatively. A better choice
is to keep LR ≈ LS and simply interpolate to smaller scales,
bypassing most of the inherent unpredictability resulting from
the dynamics driven by uncertain velocities.

III. RESULTS

A. Analytical flow

We now illustrate the use of this stochastic sensitivity
framework in three examples. We begin with the double
gyre [6], an analytical flow that has been well studied in
the coherent-structures literature [4,8]. The essential transport
dynamics of the double gyre is understood; and, because it is
analytically specified and thus does not require the solution of
any differential equations, we can use it to test the effects of
arbitrary levels of resolution and precision.

The double gyre was developed as a two-dimensional,
simplified model of flow in an ocean basin, and consists of
two vortices whose relative size oscillates back and forth. The
components of the velocity field are given by

ux = −πA sin(π f ) cos(πy) (6)

and

uy = πA cos(π f ) sin(πy)
∂ f

∂x
, (7)

where f = ax2 + bx, a = α sin ωt , and b = 1 − 2α sin(ωt ),
and it is defined on the domain x ∈ [0, 2] and y ∈ [0, 1]. Here,
we used A = 1, α = 0.02, and ω = 2π . Since f is a function
of time, this flow is unsteady. The velocity field for these
parameters is shown at t = 0 in Fig. 1(a).

The two vortices in the double gyre are separated by a
transport barrier, a co-dimension one structure (that is, a
curve, in this case) that fluid elements cannot cross. Although
this barrier is defined in the infinite-time limit in this peri-
odic flow, it is typically revealed by computing the finite-
time Lyapunov exponents (FTLEs). As has become standard
practice [7], we compute FTLEs by first constructing the
Cauchy–Green strain tensor, defined as the inner product of
the gradient of FT

0 (x) with itself. The logarithm of the square
root of the largest eigenvalue of this tensor, when scaled by the
advection time T , is the FTLE. The FTLE gives an estimate
of the local stretching rate of fluid elements, and ridges of
the FTLE field tend to correspond to transport barriers [7].
The FTLE field for the double gyre is shown in Fig. 1(b). The
expected transport barrier is revealed by the sharp ridge of the
FTLE field between the two vortices.

We now compute LS = ε
√

S2 as a function of space, as
shown in Fig. 1(c). The required intermediate calculation of
S2 is performed using the method described in Appendix A.
Here we have used ε = 0.1, but our results are fairly insen-

FIG. 1. The double gyre. (a) Velocity and vorticity fields.
(b) FTLE field, computed for an integration time of two flow cycles.
(c) LS field, computed for a time of two flow cycles.

sitive to a reasonably chosen value of ε. Recall that the local
value of LS (x) gives us information about the strength of the
inherent stochasticity due to the dynamics of the system; thus,
it should not be surprising that the LS field takes on high
values exactly on the FTLE ridge. The high local stretching
due to the flow that is picked out by the FTLE also makes
the dynamics highly sensitive to noise in this region of the
flow, since fluid elements on either side of the barrier will
experience very different flows. However, the FTLE and LS

measure slightly different susceptibilities associated with the
flow: the former measures amplifications to deviations in the
initial condition, whereas the latter quantifies the impact of
continuing uncertainty in the velocity (or, more generally, the
nonlinear evolution model). Additionally, the LS field gives us
much more information than just the location of the transport
barrier, because the values it takes tell us something about the
resolution we need to locate this barrier. In this case, we find
that LS ≈ 2 at maximum in the double gyre, suggesting that
we only require a resolution of about LR ≈ 2. Recall, though,
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FIG. 2. FTLE fields computed for the double gyre with reduced resolution and precision. (a) FTLE field computed by interpolating in a
discretized but highly resolved (LR = 0.002) velocity field. (b) FTLE field computed by interpolating a poorly resolved (LR = 0.5) velocity
field. Symbols show the locations of the velocity vectors from which the field is interpolated. (c) FTLE field computed for LR = 0.002 but
with added noise with a magnitude of 10% of the root-mean-square velocity at each point (see text for details). (d) FTLE field computed for
LR = 0.5 with 10% added noise.

that the double gyre is only defined in the domain x ∈ [0, 2]
and y ∈ [0, 1]—suggesting the surprising conclusion that our
resolution can be as coarse as the entire domain and still give
us a good estimate of the essential dynamics of the flow.

To test this prediction, we computed the FTLE field not
using the analytical values of the flow field everywhere but
rather only on a discrete grid of locations and then interpolat-
ing to estimate the velocity of a fluid element at other spatial
locations. In this way, we are mimicking the kind of data one
would obtain from a numerical simulation or an experiment.
In such cases—and particularly for experiments—continuous
data are simply not available, and refining the resolution is
often not possible due to constraints such as computational
resources or measurement technology. Interpolation is then
the only possible way to recover data at locations away from
measurements. In this example, we use simple linear interpo-
lation; our results are qualitatively insensitive to the interpo-
lation scheme chosen. In Fig. 2(a), we show the FTLE field
computed in this way using a high resolution of LR = 0.002,
much smaller than LS and therefore deep in the stochasticity
limited regime. As one would expect, the FTLE fields shown
in Figs. 1(b) and 2(a) are very similar. What is surprising,
however, is how good the estimate of the FTLE field is in
Fig. 2(b), where we set LR = 0.5 and specify only 15 velocity
vectors over the entire domain [indicated by the symbols in
Fig. 2(b)] as opposed to 5 × 105 vectors in Fig. 2(a). Some of
the fine detail is lost, but the essential structure of the transport
barrier remains. This result provides strong support for the
prediction from stochastic sensitivity theory that the structure
of the dynamics is preserved even for LR ≈ LS , as well as

the surprising conclusion that the resolution-limited regime
essentially does not exist for the double gyre.

Our theory also suggests that this low-resolution field
ought to be more robust to low precision, since small errors
will not be amplified by the inherent dynamics. To test this
prediction, we added uniformly distributed random noise to
the velocity vectors specified on our discrete grids by adding
an additional vector to each velocity with a magnitude of
10% of the root-mean-square velocity and a randomly chosen
direction. The FTLE fields for these noisy velocity fields are
shown in Fig. 2(c) for LR = 0.005 and Fig. 2(d) for LR = 0.5.
Although both cases still show the transport barrier, the effects
of the lowered precision are indeed more evident in the high
resolution case (deeper in the stochasticity-limited regime).

B. Experimental quasi-two-dimensional turbulence

In an analytical flow field like the double gyre, variation
of resolution or precision is inherently artificial. Additionally,
since the double gyre is periodic, the transport barrier that
separates the two vortices is not a transient feature of the
dynamics but rather is present for all time, and thus very
robust. We therefore turn now to a highly resolved laboratory
experiment to understand what our theory can tell us about a
more realistic situation where less is known a priori.

We consider a laboratory quasi-two-dimensional turbulent
flow. Our apparatus and measurement techniques are de-
scribed in Appendix B. We have access to highly resolved
(in both space and time) velocity fields, sampled finely with
respect to the dominant length scale Lm and associated time
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FIG. 3. Dynamical structure of the experimental quasi-two-dimensional turbulent flow. (a) LS field, given in units of Lm, the forcing scale
of the experiment (see Methods in Appendix B). The horizontal and vertical extent of the measurement domain are also given in units of Lm.
(b) FTLE field computed using the full experimental resolution of LR,max ≈ 0.06Lm. FTLEs are given in units of TL , the typical time scale of
the flow. (c) FTLE field computed with a reduced resolution of LR = 0.1Lm, in the stochasticity limited regime. (d) FTLE field computed with
a resolution of LR = 0.18Lm = 2〈L2

S〉1/2. (e) FTLE computed with a resolution of LR = 0.5Lm, well into the resolution limited regime.

scale TL of the turbulence. However, we do not know the rel-
evant length scale of the inherent unpredictability, which may
not map onto these scaling estimates exactly. Additionally, as
in any experiment, our measurements of the velocity field have
some associated finite precision that is also not known exactly.
Thus, in this experimental case, we do not have ground-truth
information in the same way that we do for an analytical flow,
so we must analyze the data in a different way.

In Fig. 3(a), we show the LS field for a representative
snapshot of the experimental data, again choosing ε = 0.1. It

shows a much more complex pattern of high values, indicat-
ing the additional complexity added to the dynamics by the
turbulence. As expected, this pattern again corresponds well
to the FTLE field computed for the same data using the full
resolution of the data set, LR,max ≈ 0.06Lm [Fig. 3(b)]. As we
artificially coarsen the resolution by reconstructing gridded
velocity fields using only subsamples of the full data set (and
recomputing Lagrangian trajectories based on these coarser
fields), the FTLE patterns change somewhat, though many
of the qualitative features remain as long as we stay in the
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stochasticity limited regime [Figs. 3(c) and 3(d)]. We note
that we keep the same number of grid points for all values
of LR; what changes is the number of measurements used to
create these gridded fields. In this case, since the LS field is
highly variable in space, we use a cutoff of 2〈L2

S〉 = 0.18Lm

to separate the stochasticity limited and resolution limited
regimes. This cutoff separates out the ridges of the LS field
from the background, delineating the two; note, however, that
our results are relatively insensitive to the choice of this cutoff
as long as it identifies the ridges adequately. Once we make
the resolution coarse enough that we fall into the resolution
limited regime, the pattern begins to change qualitatively as
well as quantitatively, as smaller-scale features are lost and
the FTLE ridges shift position [Fig. 3(e)].

To quantify the effects of reduced resolution, we computed
the standard cross-correlation of the FTLE fields for different
LR with the field computed for LR,max. We show the correlation
coefficient (that is, the normalized correlation function) in
Fig. 4(a). This correlation is close to one for small LR, but be-
gins to fall off more rapidly for larger LR values, as one would
expect: with a coarser resolution, fine-scale features cannot
be resolved. The change in slope occurs near the transition
from the stochasticity-limited regime to the resolution-limited
regime.

We can also evaluate the effect of adding artificial noise to
the experimental data, which we implemented just as we did
above for the double gyre. For each value of LR, we created
a set of artificially noisy velocity fields with different noise
amplitudes ξ , which we used to computed FTLE fields. We
then computed the cross-correlation of the FTLE fields with
artificial noise with the fields computed with no added noise.
For each value of LR, we found that these correlations decayed
roughly exponentially as the noise amplitude ξ increased. We
thus fit them (using a least-squares approach) with a function
of the form C exp(−bξ ), where C is an overall constant and
b is a decay rate. The decay rate b gives a measure of how
rapidly the structure of the FTLE field degrades as the noise is
increased; for smaller b, the added noise is less significant. In
Fig. 4(b), we show how b varies with LR. In accordance with
the counterintuitive prediction we made above, the decay of
the correlation is slower for lower-resolution data. The impact
of limited precision is indeed more severe in the stochasticity
limited regime where it is amplified by the inherent complex
dynamics of the system. However, the overall structure of the
field does become less faithful to the real dynamics when
LR increases [Fig. 4(a)], and so a balance must be struck.
Hence, as argued above, choosing a resolution comparable to
the typical LS value is a good choice.

C. Remotely sensed ocean flow

As a final case study, we turn to satellite altimetry data
for the Gulf of Mexico. Details of the data are given in
Appendix C. FTLEs (and related tools for detecting La-
grangian coherent structures) have been used previously in
the Gulf of Mexico to elucidate the dynamical structures that
guide transport [9]. They have been used, for example, to draw
conclusions about the presence of a persistent transport barrier
on the West Florida Shelf [10,11], to understand how large-
scale flow features evolve [12], and to characterize the spread

(a)

(b)

FIG. 4. Effects of reduced resolution and precision on the ex-
perimental data. (a) Cross-correlation of the full-resolution FTLE
field and the reduced resolution FTLE fields as a function of the
resolution LR. (b) Decay rate b (see text) of the cross-correlation
of the raw FTLE fields and FTLE fields computed with artificially
added noise as a function of the resolution LR. Error bars show the
95% confidence interval.

of oil after the Deepwater Horizon spill in 2010 [13]. The raw
data for such studies is typically acquired from satellite remote
sensing. Such an approach has intrinsic resolution limitations
relative to the actual scales of ocean flow, which in principle
range from planetary scales down to the finest scales of motion
that can be of order meters or smaller. As we have argued
here, resolution plays a key role in determining which features
of the FTLE field are faithful to the underlying dynamics;
however, the implications of this observation for examining
transport in the Gulf of Mexico (or other geophysical flows)
have not been examined.

The dataset we use has a spatial resolution of LR = 0.25◦
and a temporal resolution of one day. Using these data, we can
compute an FTLE field, as shown in Fig. 5(a). These FTLEs
reproduce many of the features commonly reported in the
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FIG. 5. Our theory applied to flow in the Gulf of Mexico.
(a) FTLE field computed for a 60-day period beginning March 2,
2017, in units of inverse days. (b) LS field for the same time range,
in units of degrees. (c) The same data as in panel (a), but with
regions that are resolution-limited (i.e., those with LR > LS) masked
out in white. Any structures identified in these regions are highly
questionable, in that they may appear in the wrong places due to the
unresolved physical processes.

Gulf, including the weakly mixing region off the west coast
of Florida. We can also now use our theory to compute the LS

field, as shown in Fig. 5(b). In this case, we choose a smaller
ε (ε = 0.05), as this will allow us to make a conservative
estimate of trustworthy regions below. The LS field again has
many of the same qualitative features as the FTLE field. But
since LS is a length scale, we use it in this case to assess
where we can trust the FTLE values and where they might
be questionable. As we showed above for the experimental
data, FTLE ridges for the resolution-limited case are often not
faithful to the underlying dynamics, and may appear in the
wrong places. In this case, we can identify these resolution-
limited regions using the LS field: wherever LS < LR, the data
will be resolution limited. In Fig. 5(c), we mask out these
regions of the domain, and show only the FTLEs in regions
that are stochasticity limited. Although these may contain
noise and will be affected by the inherent unpredictability in
the flow, they will in general appear in the proper places, and
can thus be interpreted in terms of transport.

IV. DISCUSSION

Measurement of complex dynamical systems is challeng-
ing for a number of reasons, including imprecise techniques,
limited resolution, and inherent complexity in the dynam-
ics. Our central message here is that by disentangling these
logically distinct sources of uncertainty, one can more ap-
propriately design measurement and simulation schemes and
better interpret empirical data. Our adaptation of stochastic
sensitivity theory allows us to precisely compute the length
scale at which the inherent dynamics will affect measurements
of the system. Over-resolving this scale does not necessarily
help to characterize the system, since measurements in this
stochasticity limited regime will always reflect this unavoid-
able source of uncertainty, and any measurement error will
be amplified. At the same time, the resolution cannot be too
coarse, since in that resolution limited regime small-scale
features are simply not present. Thus, the optimal choice is to
set the resolution to be comparable to the stochastic sensitivity
length scale.

This argument also allows one to estimate how much pre-
cision is required in an experiment, simulation, or observation
given a fixed resolution to reliably uncover features given the
dynamics. Since LS = ε

√
S2 and we argue that we want LR ≈

LS , a tolerable level of precision is given by ε ≈ LR/
√

S2.
Thus, both the resolution and the inherent dynamics come
into play when making this estimate. If ε is larger than this
bound, then LR > LS and the results will be untrustworthy.
Since ε can be thought of as a relative error estimate in
the velocity data, we are thus able to link resolution LR and
precision ε in relation to certainties in predicting Lagrangian
trajectories.

Finally, even though we have demonstrated these ideas
with examples drawn from fluid mixing, there is nothing in
our analysis that is unique to fluid mechanics. Thus, all of
the conclusions we have drawn here are straightforwardly ex-
tendable to other nonlinear complex systems, and we encour-
age researchers to consider them when designing empirical
studies.
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APPENDIX A: COMPUTING STOCHASTIC SENSITIVITY

To compute the stochastic sensitivity S2(x, t ), we use the
formulas derived in Ref. [2]. We specialize to the situa-
tion of two-dimensional, incompressible flow subject to an
isotropic constant diffusivity tensor (more generalized expres-
sions which relax these conditions are available in Ref. [2]).
Under these conditions, S2(x, t ) in Eq. (5) can be expressed as

S2(x, t ) = 1

2

∫ t

0

2∑
i, j=1


i j (w, τ )
i j (w, τ )dτ + N (w, t ),

(A1)
where w = Ft

0(x) is the final location to which x is advected
exactly under F, 
i j are the components of the matrix 
 given
by


(w, t ) =
(

0 −1
1 0

)
∇Fτ

t (w), (A2)

and

N (w, t ) =
√

P2(w, t ) + M2(w, t ), (A3)

P(w, t ) = 1

2

∫ t

0

[
2∑

i=1


2
i2(w, τ ) −

2∑
i=1


2
i1(w, τ )

]
dτ, (A4)

M(w, t ) =
∫ t

0

2∑
i=1

[
i1(w, τ )
i2(w, τ )]dτ. (A5)

For a detailed theoretical derivation of Eq. (A1), see Ref. [2].
Given velocity data u on a spatiotemporal grid and x on a
spatial grid at time 0, we can find the locations w to which
x is taken by the flow at time t . By tracking the locations
along this trajectory and others nearby and using numerical
differentiation to estimate gradients, we can compute 
(w, τ )
for all relevant times. Numerical integration can then be used
to find S2 in Eq. (A1). By performing this calculation for each
x on our initial grid, we therefore can compute S2 as a field.

APPENDIX B: EXPERIMENTAL DATA ACQUISITION

The experimental quasi-two-dimensional turbulence data
are obtained in a laboratory apparatus that we have described
in detail previously [14–17]. Briefly, in our apparatus we drive
flow in a thin layer of salt water (NaCl in deionized water,
16% by mass), with lateral dimensions of 86 × 86 cm2 and
a depth of roughly 5 mm. A second layer of pure water, also
about 5 mm in depth, floats on top of the salt water. A square
lattice of dipole magnets with their poles oriented vertically
lies below the fluid. The magnets are spaced by Lm = 2.54 cm,
and are arranged in stripes of alternating polarity. When we
drive a d.c. electric current horizontally through the NaCl
solution, a Lorentz body force is generated that drives a flow
that lies almost entirely in the plane. To measure the flow, we
seed the fluid with 51-μm fluorescent polystyrene particles
and track their motion with a 4 megapixel digital camera at a
rate of 60 frames per second. The camera only images the
central 31 × 23 cm2 of the flow so that any effects of the
lateral boundary of the apparatus are negligible in the mea-
surement region. We track about 35 000 particles per frame,
with a typical spacing of 0.14 cm, setting the spatial resolution
of the measurement. The fields are then projected onto a
streamfunction eigenbasis to ensure two-dimensionality [14].
We define a Reynolds number as Re = ULm/ν, where U is the
in-plane root mean square velocity and ν = 0.0124 cm2 s−1 is
the kinematic viscosity. For the data used here, the Reynolds
number is roughly 200. Lagrangian trajectories are computed
from these gridded velocity fields using second-order Runge-
Kutta integration in time [5] and cubic spatial interpolation of
the discrete velocity fields.

APPENDIX C: OCEAN DATA SET

Surface velocity data for the Gulf of Mexico was taken
from the Global Ocean Gridded L4 Sea Surface Heights and
Derived Variables NRT product provided by the Copernicus
Marine Environment Monitoring Service [18]. Using data
from satellite-based sea surface altimetry, this data set con-
tains gridded surface velocity estimates with a spatial resolu-
tion of 0.25◦ × 0.25◦ and a temporal resolution of one day.
Lagrangian trajectories are again computed by Runge-Kutta
integration, and cubic interpolation is again used spatially.
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