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Manipulating the direction of turbulent energy flux via
tensor geometry in a two-dimensional flow

Xinyu Si’, Filippo De Lillo?, Guido Boffetta?, Lei Fang1’3*

In turbulent flows, energy flux, the cornerstone of turbulence theory, refers to the transfer of kinetic energy across
different scales of motion. The direction of net energy flux is prescribed by the dimensionality of the fluid system:
Energy cascades to smaller scales in three-dimensional flows but to larger scales in two-dimensional (2D) flows.
Manipulating energy flux is a formidable task because the energy at any scale is not localized in the physical space.
Here, we report a theoretical framework that enables control over energy flux direction. On the basis of this frame-
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work, we conducted experiments and direct numerical simulations, producing a 2D turbulence with forward en-
ergy flux, contrary to classical expectations. Beyond theory, we discuss how our theoretical framework can have
profound applications and implications in natural and engineered systems across length scale ranges from 1073
to 10° meters, including enhanced mixing of microfluidic devices, biologically generated turbulence, breaking

persistent coastal transport barriers, and ocean energy budget.

INTRODUCTION

Turbulence governs the motion of many fluid systems, including the
oceans and atmosphere, and serves as an efficient mechanism for
mixing substances. From a theoretical point of view, turbulence is
the quintessential example of a nonlinear system far from equilibri-
um with many degrees of freedom. Therefore, any advancement in
understanding turbulence has substantial implications and applica-
tions across multiple scientific fields.

Navier-Stokes (NS) turbulence is characterized by energy flux be-
tween different scales of motion. The direction of the net energy flux is
predetermined by the dimensionality of the flow (1-5). Heuristically,
in three-dimensional (3D) turbulence, energy injected at macroscopic
scales generates large eddies that break down into progressively small-
er ones. This energy transfer toward smaller scales, known as forward
energy flux, is eventually halted by viscous dissipation (I, 6). In con-
trast, in two-dimensional (2D) turbulence, energy is transferred from
the scales where it is injected to larger scales—a process known as in-
verse energy flux. This energy is then either dissipated or accumulated
at the largest available scale (Fig. 1A) (7-9).

Here, we study an intriguing yet pragmatic question of whether
the direction of net turbulent energy flux can be manipulated by a
suitable forcing scheme. Our manipulation approach is based on a
simple observation that the turbulent cascade process can be recast
into a mechanical process (10) where stress (analogous to force) and
the rate of strain (analogous to displacement) at different scales of
motion can work with or against each other to generate positive or
negative work between scales. In 2D turbulence, both stress and the
rate of strain are represented as second-order tensors. When the
stress tensor aligns with the rate of strain tensor, small scales do
work on larger scales, resulting in an inverse energy flux. Converse-
ly, forward energy flux emerges when these two tensors are perpen-
dicular (Fig. 1). This mechanical picture immediately underscores
the critical role of geometry in determining the direction of spectral
energy flux. The key to manipulating energy flux lies in controlling
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the alignment between these two tensors. If this intuitive framework
holds, it could enable the generation of unconventional types of NS
turbulence—specifically, 3D turbulence with a net inverse energy
flux and 2D turbulence with a net forward energy flux. Here, we fo-
cus on manipulating the 2D flow and show the successful control of
net energy flux direction through both electromagnetically driven
thin-layer flow experiments and direct numerical simulations. The
framework can be extended to 3D flows as well.

RESULTS

Theoretical framework of tensor alignment

Filtering is an archetypal method for examining interactions between
different scales in a nonlinear system. By applying a filter to a nonlin-
ear equation at a given length scale, the nonlinearity produces new
terms in the filtered equation that capture the interaction between the
degrees of freedom that are retained and those that are removed. In
other words, these new terms act as source or sink terms for the re-
maining degrees of freedom. For example, applying a low-pass filter,
i.e., removing scales of motion that are smaller than a certain cutoff

length scale (L), to the NS equations introduces the subgrid-scale

L . .
stress rEjL) = (uiuj)( - u?L) u](.L) into the filtered NS equations, where

u; is the ith component of the fluctuating velocity. This stress term
depicts the momentum transfer across the length scale L. Similarly,
inspecting the equation of motion for filtered kinetic energy
D)

i Sij
representing the energy flux between unresolved and resolved scales,
where SEJ.L) =(1/ 2)( 0 uz(.L) /0x;+0 u;L) /0x; ) is the filtered rate of strain

(see Materials and Methods). Recalling the analogy introduced earli-

L
er, <D
ij

(EW = %ul@ugm) yields a spectral energy flux term I =

is analogous to force and sij) is analogous to displacement. The

inner product between these terms determines the work done from
filtered (smaller) scales to retained (larger) scales through length
scale L, which represents the spectral energy flux between scales of
motion. Manipulating TT®) is the primary goal of this study.

This interpretation highlights the critical importance of geomet-

ric alignment between the two tensors ngL) and s;.L) (Fig. 1). When ngL)

and s;.L) are aligned, IT'¥) < 0, indicating inverse energy flux toward
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Fig. 1. Spectral energy flux and tensor geometry. (A) Schematic representation of spectral energy flux in turbulence. For forward energy flux (red), energy injected at
large scales cascades to progressively smaller scales until it is dissipated by viscous forces. For inverse energy flux (blue), energy is injected at small scales and then trans-
ferred to progressively larger scales. This energy is either dissipated or piles up at the largest scale available within the system, defined by the system’s size. These
processes are quantitatively described by the energy spectrum E(k), which denotes the distribution of kinetic energy across modes with wave number k = 2z /L. (B) In-
stantaneous velocity field (gray arrows) overlaid on a spectral energy flux map for 2D weakly turbulent flow. Consistent with the color scheme in (A), the red color repre-
sents forward energy flux, and blue stands for inverse energy flux. The intensity of the color indicates the magnitude. (C) Large-scale velocity u?“ (gray arrows) for the same
2D turbulent flow, with L / W = 0.8, where W is half of the domain size. Purple double-headed arrows indicate the local direction of G, and the background color shows
the magnitude of 6. (D) Small-scale velocity u; — quL) (gray arrows) for the same 2D turbulent flow. Green double-headed arrows indicate the local direction of ¥, and the
background color shows the magnitude of y. (E) Zoomed-in view of tensor geometry, showing the alignment between the extensional eigenvectors of the rate of strain
tensor (purple) and of the stress tensor (green). The local spectral energy flux depends on the tensor geometry, as described by Eq. 1. The alignment between these two
eigenvectors in the circled region is consistent with the energy flux direction in (B).
larger length scales. Conversely, when TE].L) and sij) are perpendicular, alignment between stress and the rate of strain tensor is self-
organized, leading to a net inverse energy flux. Previous researchers
have proposed treating n = cos(ZB(L)) as a measure of the efficiency
of energy flux between scales (10). The rationale behind this defini-
tion is that 1 represents the ratio between the observed energy flux
and the maximum geometrically achievable flux, as determined by
tensor geometry. It was found that the efficiency in typical isotropic
2D turbulent flow is relatively low, with an n of only 27%, as reported
in previous experiments (10), indicating that a large portion of the
geometrically possible energy flux is not realized.

In principle, by generating a background flow with an ordered

" > 0, indicating forward energy flux toward smaller length
scales (Fig. 1). Furthermore, D can be reexpressed as a function
that depends on the geometric alignment between the eigenframes
of TE].L) and sij). In the 2D flow, this relationship is described by the

following equation (10, 11)
Y = —2yccos(201) 1)

where ¢ and y are the largest eigenvalues of the rate of strain and the
deviatoric part of stress tensors, respectively, and 8% is the angle

between the corresponding (extensional) eigenvectors 6 and §. It is
then clear that the alignment of the stress and the rate of strain ten-
sor can determine not only the magnitude but also the direction of
the energy flux. When 8 < n/4, energy fluxes to larger scales,
generating inverse energy flux; when 6 > 1 /4, energy fluxes to
smaller scales, resulting in forward energy flux. No net energy flux
occurs when 8 = &t / 4. In typical isotropic 2D turbulent flows, the
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rate of strain and perturbing it with directionally biased stresses, we
can control the tensor geometry between stress and the rate of strain
tensors, thereby manipulating the efficiency of the net energy flux
based on Eq. 1. In this study, we selected hydrodynamic shear as the
background flow, establishing a well-organized large-scale rate of
strain orientation (Fig. 2B), and perturbed it with a directionally bi-
ased monopole-like perturbation (Fig. 2C). The direction of ¥ from
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Fig. 2. Experimental setup and characterization of the background flow and physical perturbations. (A) Schematic of the experimental setup. The cross section of
the experimental setup illustrates the thin fluid layer and tracer particles at the surface (not to scale). A pair of electrodes conducts direct current horizontally through the
electrolyte. The vertical magnetic field from the permanent magnets interacts with the horizontal direct current to generate the Lorentz force on the fluid, which acts
nearly within the plane. The tracer particle on the fluid’s surface represents the 2D space under study. A rod array is controlled by a linear actuator, which can introduce
directionally biased physical perturbations. (B) Flow field of the hydrodynamic shear (gray arrows). Red double-headed arrows indicate the extensional direction ofsf.j“ (@).
(C) Flow field of a moving rod array in quiescent fluid (gray arrows). Red double-headed arrows indicate the extensional direction of‘r;jL) (7). The blue curves in (B) and (C)
represent the assembled average of the v component of velocity along the x axis, normalized by the root-mean-square velocity U. Shaded areas indicate the standard
deviation of the v component of velocity normalized by U. The assembled average was calculated both temporally and spatially along the y axis. Arrows in the velocity

and eigenvector fields were downsampled for clearer visualization.

the monopole-like perturbation is found to align with the direction
of the applied monopole forces (see Materials and Methods). Con-
sequently, by controlling the mechanical angle 8 between the direc-
tion of 6, associated with the background shear flow, and the direction
of the monopole forces, we can substantially manipulate the direc-
tion of the spectral energy flux.

Experiments and numerical simulation of energy

flux manipulation

To apply this theoretical framework for manipulating energy flux,
we conducted experiments using an electromagnetically driven
thin-layer flow system (Fig. 2A) (8, 12, 13). We generated a steady
shear flow to establish a well-ordered large-scale rate of strain via
the Lorentz body force that arose from the interaction between the
magnetic field produced by two stripes of magnets with opposite
polarities and a direct current passing through the electrolyte layer
(Fig. 2B). The physical perturbation was introduced using a 5 by 5
grid of rods driven by a programmable linear actuator at a velocity

Sietal, Sci. Adv. 11, eadv0956 (2025) 25 July 2025

of 1 cm/s in a forward-and-back manner (Fig. 2C). The flow was
then recorded and analyzed using a particle tracking velocimetry
algorithm (see Materials and Methods) (14).

The numerical simulations were performed using a standard ful-
ly dealiased pseudospectral code (15, 16). NS equations were inte-
grated on a 2D domain with a second-order Runge-Kutta temporal
scheme. The linear hydrodynamic shear was generated by simulat-
ing a Couette flow between two walls. Local physical perturbation
was applied via a 5 by 5 array of force monopoles. The strength of
monopoles had a pulsating force varying sinusoidally (see Materials
and Methods).

Manipulated net spectral energy flux

We summarize our experimental and simulation results of energy
flux manipulation in Fig. 3 (17), where a considerable correlation
between the controlled mechanical angle (6) and the measured ten-
sor alignment angle (6”)) was observed. In our experiments, we
conducted three control cases. The first involved pure shear flow
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Fig. 3. Experimental and numerical results of energy flux manipulation. This figure illustrates how the mechanical angle, 6, affects tensor alignment, subsequently
influencing energy flux in both experimental and simulation results. (A and H) Probability density functions (PDFs) of tensor alignment angle 0) with L /W = 0.8 for
both experiments and simulations, where W is half of the domain size for experiments and simulations, showing that different forcing conditions produce distinct tensor
alignment distributions. (B and I) Temporal evolution of spatially averaged I® with L / W = 0.8 for experiments and simulations, respectively. (C and J) I[1") at different L
values for experiments and simulations, respectively. The inset of (J) is the Y atL /W = 0.8 for a range of mechanical angle (6). (D and K) Third-order structure function
S, at different displacement r for experiments and simulations, respectively. (E to G and L to N) Snapshots of spatial distribution of energy flux for0 ~ n /2,0 ~ n /4, and
0 ~ 0, respectively. (E) to (G) correspond to experiments and (L) to (N) correspond to simulations. The gray arrows are flow velocity vectors, and the color maps show the
magnitude of spectral energy flux ITV All times are normalized by T, which represents the rod array’s moving period for experimental results and the blinking period of
the monopole array for simulation results. All lengths are normalized by half the domain size. TI® is normalized by viscous dissipation 2vQ, where Q is the spatially aver-
aged vorticity square. Overall, these panels collectively demonstrate that the direction and magnitude of turbulent energy flux can be systematically manipulated via
tensor alignment, and this manipulation is observed consistently across experimental and numerical systems.
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without perturbation. In the second case, we introduced a static rod
array into the shear flow, ensuring that any changes in tensor geom-
etry were not due to the rod array acting as a new boundary condi-
tion. The third control case was the rod array moving in a quiescent
fluid to rule out the possibility that the energy flux manipulation
was due to the rod array moving alone. As shown in Fig. 3A, in all
three control cases, 0" was symmetrically distributed around = / 4,
resulting in an efficiency 1 close to zero. Consequently, we observed
only a relatively weak spectral energy flux in these control cases
(Fig. 3C).

When we aligned the added stress with the background rate of
strain (0 & 0), we observed a salient shift of 8" toward 0 (Fig. 1A).
Similarly, we observed a substantial shift toward 6" = /2 as we
applied the added stress perpendicularly with the background rate
of strain (0 = m/2). As our manipulation set 8 to approximately
n/4, 0% was symmetrically distributed around = /4, resulting in
only a small net energy flux between scales (Fig. 3, A and H). The
direct numerical simulations allowed for fine-tuning the direction
of the monopole array. In the inset of Fig. 3], we present the energy
flux as a function of different mechanical angles 0. We see that the
energy flux varied with 0 in a sinusoidal manner that reflected the
form of Eq. 1. Theoretically, the maximum inverse energy flux
should occur when 8 =0, and the maximum forward energy
flux will emerge when 6 = 1/2. In our observations, the maxi-
mum inverse and maximum forward angle alignments occurred at
0=n/16 and 6 == /2, respectively. The slight discrepancy be-
tween the optimal 8 and optimal 8 for maximum inverse energy
flux is likely due to the engineered tensor alignment being slightly
altered during the coupling, an inherent nonlinear process, be-
tween the physical perturbation and the background flow.

We calculated the energy flux between scales based on the mea-
sured stress and the rate of strain tensors. In Fig. 3 (B and I), we
present the time series of the spatially averaged energy flux. Al-
though the time series of energy flux correlated with the forward-
and-back motion of the rod array in experiments and with the
blinking of the monopoles in simulations, the energy flux directions
remained consistent with the manipulated geometric alignments.
We also calculated the net energy flux across different cutoff scales
(Fig. 3, C and ]). Consistent with the tensor geometry statistics, the
motion of the rod and monopole arrays considerably influenced the
direction of the energy flux by introducing directionally biased
small-scale stresses.

A further observable related to the direction of energy transfer is

the third-order longitudinal structure function S;(r) = < [A,u -31] ’ >,

where € is the unit vector in the longitudinal direction and
A,u=u(x+7€) — u(x) is the velocity difference over displacement
r. While the filtering approach in Eq. 1 accesses different scales by
spatial filtering, S;(r) encodes the information on the dynamics at
each scale via the statistics of the velocity difference at the corre-
sponding displacements in the physical space. As shown in Fig. 3 (D
and K), the third-order structure function changes sign with 6. This
can be interpreted in view of well-known results valid for the iner-
tial range of large-Reynolds-number turbulent flows. In that case,
one can show that S; = —Cer, where € is the (positive) energy dissi-
pation rate, while C is a constant whose sign depends on the direc-
4

tion of the cascade. In 3D flows (where the flux is positive), C = :

(18), while C = —% (19) in the 2D flow, where the energy flux is

Sietal, Sci. Adv. 11, eadv0956 (2025) 25 July 2025

negative and an inverse, upscale energy cascade is observed. Al-
though, at our relatively low Reynolds numbers, the scaling results
do not apply, one can expect S; < 0 for a direct energy flux and
S; > 0 for an inverse one, which is consistent with the observation.
Therefore, the sign of S; provides an additional signature of the di-
rection of spectral energy flux, complementing the filtering results.
We emphasize that S;(r) is used here only as a qualitative cross-
check rather than an independent proof of energy flux direction. It
has been highlighted that caution is needed when interpreting S;(r)
in 2D turbulence because the S;(r) law varies with different flow
conditions and nonideal effects, such as large-scale drag, can con-
siderably affect the sign of S;(r) (20).

Notably, we have both experimentally and numerically produced
2D weak turbulence with net forward energy flux, a phenomenon
contrary to classical expectations (Fig. 3, E and L). This is particu-
larly noteworthy because traditional 2D turbulence, as predicted by
Kraichnan (3), exhibits a net inverse energy flux. The creation of this
atypical type of turbulence provides a unique opportunity to com-
pare it with its traditional counterpart, potentially deepening our
understanding of the turbulent cascade process. Specifically, by pro-
viding a mechanical perspective on spectral energy transfer, our
findings suggest a framework for probing the longstanding question
of why, statistically, naturally occurring 2D turbulent flows tend to
maintain a net inverse energy flux—or, in the language of tensor
geometry, why they favor an average alignment angle below m/4
(21, 22). From an application perspective, reversing the natural di-
rection of energy flux may induce profound kinematic and dy-
namical differences that may not only enhance our understanding
of natural processes but also improve our ability to control engi-
neered systems.

DISCUSSION

Our analysis demonstrates that directionally biased physical pertur-
bation can couple with the background flow, causing distinct yet
predictable directions of spectral energy flux. Directionally biased
physical perturbations are prevalent in both natural and engineered
systems. Therefore, our results have broad applications and implica-
tions in both natural and engineered systems, spanning length
scales from millimeters in microfluidic mixers to hundreds of kilo-
meters in geophysical flows (Fig. 4).

On the millimeter scale, microfluidic mixers often suffer from
poor mixing (23, 24). Our findings offer valuable insights into ad-
dressing this issue. By engineering the flow in microfluidic mixers
at a low Reynolds number to induce forward energy flux, it is
possible to generate smaller scales of motion, thereby enhancing
mixing efficiency.

Biologically generated ocean mixing plays a crucial role in un-
derstanding the biogeochemical structure of the water column in
climatically important regions of the ocean (25-27). Contrary to
traditional belief, a recent study has shown that a swimmer’s ability
to mix the local flow is not an immutable trait but varies depending
on the swimmer’s alignment relative to local shear. The study dem-
onstrated that flows generated by a group of swimmers can couple
with background flows to enhance mixing (12). Moreover, the inter-
action between the directionally biased stress from a swimmer and
a background hydrodynamic shear can induce appreciable differ-
ences in spectral energy transfer properties and modify the strength
of background hydrodynamic shear (13). Therefore, the coupling
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Fig. 4. Applications and implications in natural and engineered systems. Spectral energy flux manipulation can occur in systems spanning scales from 107 to 10° m.
This manipulation occurs either through engineering (A and C) or via natural processes (B and D). (A) By engineering appropriate boundary conditions that interact with
fluid to generate directionally biased stress, we can force forward energy flux even at a Reynolds number of order 1, as our theoretical framework remains valid. The in-
crease in small-scale energy will generate fine-scale eddies that facilitate mixing in microfluidic mixers. (B) In nature, biologically generated agitation is found to be able
to couple with the background hydrodynamic shear to generate either forward or inverse energy flux. This process can either attenuate or strengthen the background
hydrodynamic shear, affecting the local biogeochemical structure of the water column. (C) Engineered boundary conditions or directionally biased jets with moderate
energy can considerably affect LCSs in coastal oceans. In Materials and Methods, we present a theoretical estimation of the energy power needed to actively manipulate
LCSs. (D) Climate change will profoundly alter wind fields and oceanic flows. Our results suggest that the altered wind stress could profoundly affect the direction of en-
ergy flux in the oceanic flow because of varying alignments between wind stress and oceanic flow.

between directionally biased stress from swimmers and background
flow is of great importance in understanding the impact of biologi-
cally generated turbulence on ocean mixing.

In coastal oceans, Lagrangian Coherent Structures (LCSs), which
can span several kilometers, act as transport barriers in geophysical
flows, hindering effective mixing in coastal areas and potentially
contributing to the formation of ocean forbidden zones (28, 29).
Disrupting these LCSs in coastal regions could alleviate these for-
bidden zones and improve the health of coastal ecosystems. Our
theoretical framework offers a method to engineer optimal small-
scale stress that couples with the background flow to enhance for-
ward energy flux. The enhanced forward energy flux will dump
energy that sustains the large-scale LCSs to smaller scales, where,
eventually, it can be dissipated by viscosity. In the Supplementary
Materials, we present a theoretical estimation demonstrating the
feasibility of manipulating LCSs. This estimation suggests that it is
possible to substantially influence LCSs using only 0.05% of the en-
ergy that sustains them.

In geophysical systems, wind stresses consistently do positive
or negative work to facilitate energy exchange between atmo-
spheric and oceanic systems (30-32). Beyond this traditional
first-order view of energy exchange, our results indicate that a
profound second-order effect may arise when local wind stresses
act as biased stresses. These biased wind stresses could interact
with the rate of strain of the oceanic flow, leading to distinct di-
rections of energy flux among different scales of motion in oce-
anic flows. While this remains a hypothetical extension and has
not yet been tested, this hypothesis provides valuable insights and

Sietal, Sci. Adv. 11, eadv0956 (2025) 25 July 2025

offers a promising framework for understanding the multiscale dy-
namics of geophysical flows. In the context of climate change, altera-
tions in the flow patterns of either atmospheric or oceanic systems can
influence not only the energy exchange between these systems but
also the direction of energy flux within the oceanic flow system, po-
tentially reshaping large-scale circulation and transport dynamics.

To conclude, we have developed a theoretical framework for ma-
nipulating the direction of spectral energy flux through tensor ge-
ometry. This theoretical framework was demonstrated through the
successful manipulation of spectral energy flux of the 2D flow in
both experiments and simulations. Beyond its theoretical signifi-
cance, our framework has profound applications and implications
for natural and engineered systems ranging from microfluidic mix-
ers and biologically generated turbulence to geophysical flows.

MATERIALS AND METHODS

Filtering approach and spectral energy flux term

Filter space technique

The filter space technique is based on a filtering process (33) and can
extract spatially localized scale-to-scale energy flux information
from measured flow fields (34). The filtering process can be gener-
ally expressed as a convolutional integral (35). For example, the fil-
tered component of a velocity field has the form

ul(.L)(x) = J GWYar, X)u;(x—r)dr (2)
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where G is a kernel acting as a low-pass filter, with the superscript
L indicating the cutoff length scale. Our result is not sensitive to the
specific nature of the filter kernel. Here, we used a sharp spectral
filter (with a cutoff length L) smoothed by a Gaussian window to
avoid the ringing effect.

To obtain the spectral energy flux term T, we start from fil-
tering the NS equations that govern the motion for incompress-
ible fluids

azu,.
axjaxj

du.
and e} =0
0x;

1

ou; ou;

1.0p
— Ly —t=—c
ot " iox,

p 0x; (3)

in which u; is the ith component of velocity, p is the density, p is the
pressure, and v is the kinematic viscosity. After applying the filter, we
can obtain the evolution equation for the filtered velocity field u(L)

(L) (L) 2 (L) (L)
ou w0 1 op® 0"u aTiJ'
+u =—= +v - (4)
ot Toox p 0x; aijxj 0x;
where 'r( ) = (ulu])(L) - uEL)u(.L)
i

Taklng the inner product of u(L) and the filtered momentum Eq. 4,

we can obtain the equation of ‘motion for the filtered kinetic en-

ergy EO = %uEL)ul(,L) as
(L) @ 3y
0EW —_ 9J; v o0u; 1w (5)
at 0x; 0x; 0x;
where TV = —¢ (]L) (JL) with s(L) (au§“ /0x;+ bu]@/ ax,») being

the rate of strain tensor for the filtered velocity field. On the right-
hand side of Eq. 5, the term with ]l.(L) assembles all the terms that
represent the spatial currents of filtered energy. The second term
represents the viscous damping of energy within the resolved scales.
The term "), in particular, represents the spectral energy flux be-
tween scales smaller than L and scales larger than L. TI'¥) < 0 indi-
cates inverse energy flux toward larger length scales. TI®) > 0
indicates forward energy flux toward smaller length scales.
Spectral energy flux term decomposition

(L)

The stress tensor .. can be further decomposed into three compo-

nents (4, 35, 36) on the basis of the type of triad interaction as

(L)
P = <u(.L) u@) —uPy®
ij i i

(L) (L)
(L) (L) (L) (L)
)] o)
(L)
(L) (L)
(i) o)

09}
@, L) >

(6)

@, (@)

—u; is a small-scale

i
quantity composed of two large-scale quantities. The second compo-
(L) (¢9)
nent T(CL) = [u(,L) (u- - u@)] + [u@(u- - u@)] is a large-scale
i RS j !

1

The first component 17( ) = (u

quantity composed of one large-scale quantity and one small-scale

(L)
u@) (u - u@)] isa
i ] j

large-scale quantity composed of two small-scale quantities. In large
eddy simulation, the three terms are called Leonard stress, cross

quantity. The third component T(L) [(u, -
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stress, and subgrid-scale Reynolds stress, respectively. We take these

names here for convenience. However, note that u; here contains in-
formation about all scales of motion and, hence, the term T(])

volves no modeling, which is different from large eddy simulation.
The inner products of these components with sfp give the corre-
sponding components of the spectral energy flux ") as l'[g“), 1'[%),

and H(SL)

n® =1 +n + o 7)
my = —s (8)
H(CL) = —rg)sl(f) 9)
Mg = —ty’s;” (10)

In (36), it has been shown that the subgrid term HéL) carries most
of the net spectral energy flux information between the large and
small scales. The Leonard term and the cross term involve more
subtle interpretations. Using a simple cellular flow, Liao and Ouellette
(36) showed that the Leonard term is dominated by the transfer of
energy between different resolved wave vectors rather than the
transfer of energy between large and small scales. However, after
spatial averaging, they found that the Leonard term and crossing
term have a negligible contribution to the net spectral energy flux,
which is also verified by our experiment data of a 2D turbulent flow
(see fig. S1).

Despite the theoretically negligible contribution to the spectral
energy flux by the Leonard term and the cross term, including the
Leonard term and the cross term will cause contamination to the
calculated spatially averaged spectral energy flux, especially in re-
gions near boundaries. Specifically, this contamination comes from
edge padding when applying a filter to the measured data near
boundaries. Padding involves filling artificial data (here, we used
zero-padding) into the regions out of boundaries where there are no
measured data so that the filtering process can be applied near
boundaries. The magnitude of this padding error is small compared
to the magnitude of the small-scale fluctuations (u; — uEL)) created
by the moving rods. However, this padding error will be magnified
when it is added to or multiplied by a large-scale velocity (ul(.L)).
Therefore, here, we used the subgrid flux term H(SL) in our analysis
instead of II'"). For simplicity and clarity, we omitted the subscript in
both the figures and the main text.

Theoretical background for tensor geometry

Rewriting the spectral energy flux term

The theory of tensor geometry is described in detail in (10, 37).
Here, we just briefly introduce the necessary information. Because

the rate of strain tensor s( s symmetric and deviatoric, we can just

consider the deviatoric part of the stress tensor when calculating the
spectral energy flux because only this part will affect the inner
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product (38). Both the rate of strain tensor and deviatoric part of the
stress tensor have two eigenvalues with the same magnitude and op-
posite sign. The eigenvector corresponding to the positive eigenval-
ue (referred to as extensional) and the eigenvector corresponding to
the negative eigenvalue (referred to as compressional) are orthogo-
nal. We label the extensional eigenvalue for the stress tensor as y and
that for the rate of strain tensor as 6. Working in the eigenbasis of
the stress tensor and marking the angle between the extensional ei-
genvectors of these two tensors as 0™, we have
—TI® = D@

i i

= (5) o) oy ) ) e o J @
=2yccos(20)

Note that using TE.L) or T(SL) does not affect the derivation of Eq. 11.
Because both y and © are positive, we can see that the direction of
spectral energy flux depends only on the alignment of the eigen-
frames of the two tensors.

Tensor geometry of the large-scale shear

Through the perspective of tensor geometry, there arises the possi-
bility of manipulating the spectral energy flux by forcing the small-
scale stress to align with the large-scale rate of strain in any intended
angle. To demonstrate this, first consider a cutoff length scale L. At
large scales, there exists a steady shear flow whose width is much
larger than L. To simplify this problem, we set the steady shear flow
with streamlines aligning with the y axis and with no stream-wise
velocity gradient. In the x direction, the shear has a constant veloc-
ity gradient K for the vertical velocity component. The rate of strain
tensor of the shear flow at any length scale L is then

1
0 -K
5=, 7 (12)
=K 0
2
Because this matrix is traceless and symmetric, it has two eigen-
values of the same magnitude but with opposite signs. The two ei-
genvectors are orthogonal, and the angle between the extensional
eigenvector and the x axis has an angle of © /4 (or 57 / 4). If we apply
disturbances to the large-scale shear flow with injection length
scales much smaller than L, the nonlinear coupling between the ap-
plied small-scale stresses and the background flow will result in tur-
bulent flow that transfers energy through scales.
Tensor geometry of the small-scale stresses
Here, we demonstrate how we generate engineered small-scale
stress through physical perturbations. For simplicity, consider the
small-scale disturbance as a velocity vector b, that forms an angle 0,
with the x axis. Given enough scale separation between the small-
scale disturbance and the large-scale shear, we would expect that
most of the information induced by the small-scale disturbance will
be included in the residue after filtering. Therefore, we can estimate
thatb; ~ u; — uSL). The deviatoric part of the subgrid-scale Reynolds
stress is thus

i%
osz(eb) -5 sin(eh) *cos(eb)

sinz(eb) —%

w0 = (b))
1 W

~{ 1o, ()

sin(@b) *cos(@b)
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We note that the filtering process will not affect the eigenvector
direction. We can get that the extensional eigenvector for the devia-

toric subgrid-scale Reynolds stress 'ch) is in the direction of

1
( > Therefore, the direction of the extensional eigenvector
tan (9 b )
of ’E(SL) is in parallel with the direction of b,.

From the derivations above, we can see that the directions of the
R
applying physical perturbations to the background flows. Therefore,
on the basis of Eq. 11, it is possible to manipulate the direction of
spectral energy flux by controlling the alignment between the eigen-
frames of these two tensors.

. . L
extensional eigenvectors for both s;.” and ’I:(S ) are known even before

Quasi-2D turbulence experiments

Apparatus and particle tracking

The main body for the quasi-2D flow system consisted of an acrylic
frame, a pair of copper electrodes installed on the opposite sides of
the setup, and a piece of tempered glass in the center separating a
thin layer of salt water on top and an array of cylindrical magnets
below. The dimensions of the main frame and the glass floor in the
center were 96.5 cm by 83.8 cm and 81.3 cm by 81.3 cm, respec-
tively. We coated the upper surface of the glass with hydrophobic
materials (Rain-X) to reduce friction and covered the lower surface
by a light-absorbing blackout film. Beneath the glass, cylindrical
magnets were organized in desired patterns to drive flow in different
directions. Each magnet (neodymium grade N52) had an outer di-
ameter of 1.27 cm and a thickness of 0.64 cm, with the maximum
magnetic flux density of 1.5 T at the magnet surface. We loaded a
thin layer (6-mm thickness) of 14% by mass NaCl solution on top of
the glass. The solution had a density p = 1.101 g/cm” and a viscosity
v=1.25 x 1072 cm?/s. By passing a direct current through the con-
ducting solution layer, we were able to drive a quasi-2D flow with
the resulting Lorentz body force and control the flow Reynolds
number by adjusting the direct current intensity. The 2D was well
kept throughout our experiments.

To track the flow, we seeded green fluorescent polyethylene trac-
er particles (Cospheric) into the fluid. The tracer particles had a
density of 1.025 g/cm® and diameters ranging from 106 to 125 pm.
The Stokes number of the particles was of order 10>, which means
that the particle could accurately trace the flow (39). Because the
density of the particles was lower than that of the working fluid, they
would float on the gas-liquid interface. Because of surface tension
effects, they would show a slow clustering tendency, which is known
as the “cheerios effect” (40). To reduce the surface tension, a small
amount of surfactant was added to the fluid to minimize the impact
on tracer movements. QOur measurement of tracers in quiescent
fluid showed that the “cheerios effect” was negligible.

We used a machine vision camera (Basler, acA2040-90pm) to
image the flow that was illuminated by blue light-emitting diode
lights. We recorded an 11.4-cm by 11.4-cm region at the center of
the setup with a resolution of 1600 pixels by 1600 pixels. About
18,000 to 22,000 particles could be recorded at a frame rate of 60
frames per second. With this particle density and frame rate, we
could obtain highly spatiotemporally resolved velocity fields
through a particle tracking velocimetry algorithm (14). For easi-
er use, we then interpolated the measured flow onto regular Eu-
lerian grids using cubic interpolation with a grid size of 12 pixels
(0.85 mm), which gave a grid density not higher than the original
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particle density. The final analysis to obtain Figs. 2 and 3 was
performed on a 7.4-cm by 7.4-cm domain at the center of the
measured area to reduce errors near boundaries caused by edge
padding during filtering.

Two-dimensional steady shear flow with moving rods

We used two stripes of magnets with opposite polarity. The distance
between the two stripes was 20 cm. When a direct current was con-
ducted through the fluid, the two stripes generated a hydrodynam-
ic shear with an ordered rate of strain (Fig. 2B). To apply the
small-scale stress to couple with the rate of strain in the background
flow, we built a 5 by 5 grid of rods and drove the grid with a pro-
grammable linear actuator. The diameter of each rod was 2 mm,
and the center-to-center space between neighbor rods was 2.5 cm.
The rod array moved back and forth at a speed of 1 cm/s to generate
directionally biased stress (Fig. 2C). We define Reynolds number
Re = UW /v, where U is the root-mean-square velocity, W is half of
the domain width for analysis, and v is the kinematic viscosity. The
Reynolds number of the resulting flow was 210.

2D turbulence simulation
The numerical simulations were carried out using a standard fully
dealiased pseudospectral code (15, 16). Equation 3 was integrated
on a 2D domain of size L, X L,, with a second order Runge-Kutta
temporal scheme. To simulate a configuration similar to that of the
experiment we used as a base flow, a linear shear flow was obtained
by imposing the boundary conditions u(Lx /2,y) =u, = (0, + US)
and u(—L,/2,y) =u_= (0, - U,) at the walls x = + L, /2, with
periodic boundary condition on the y direction. The boundary con-
ditions were implemented via a penalization method (41). Specifi-
cally, at each time step, the body force

Foop(®) = —A[ux) —u,|p(xFL,/2) (14)
was imposed, with A being a large parameter. The scalar function ¢
is a mask with support only within a small distance r, of the bound-

aries and defined as ¢p(x) = cos(%) if| x| < r,and ¢p(x) = 0 other-
wise. All the simulations presented here are performed with shear
velocity U; = 1and domain sizes L, = 6.136 and L, = 2x (arbitrary
units). We used a numerical resolution of N, X N,, = 500 X 512 grid
points, which is sufficient to resolve the smallest scale in the flow,
and the support of each penalization mask was 2r, = 9.8 X 1072 cor-
responding to eight grid points.

The local forcing was applied using 25 force monopoles
whose centers were organized on a regular 5 by 5 square grid
with side 2.0 (approximately one-third of the span of the effec-
tive numerical channel). Each monopole applied a pulsating
force F; = fsin(wt)G(x;)e(0,,), where x; is the position of the ith
monopole, G(x) is a two-dimensional normalized Gaussian with
a half-width of four grid points, and €(6,,) = (—sin®,,, cos0,, )
sets the direction of the force monopole at an angle 0,, with re-
spect to the y axis. The amplitude of the monopole was f = 0.38.

All the numerical simulations were started from a fluid at rest
u =0 and carried on until a shear flow u = (0,2xU,/L,) was pro-
duced. A kinematic viscosity v = 10"% was used, which corresponds
to a Reynolds number Re = UL, / (2v) = 184 on the basis of the half
channel width and the root-mean-square velocity U. After a steady
state is reached, the forcing is applied with f = 0.38 and 0 = 2x /5.

Sietal, Sci. Adv. 11, eadv0956 (2025) 25 July 2025

Such parameters were chosen to provide close to maximum effect

measured in terms of H(SL) /(21Q), and they were kept fixed for all
simulations while changing the value of 8,,. In all cases examined
here, the resulting flow is periodic with the same periodicity of the
local forcing (see the main text). The analysis was therefore per-
formed over one period with the same code used for the experimen-
tal results. The final analysis was conducted in a 2 by 2 domain at the
center of the simulation domain to obtain the results in Fig. 3, where
local forcing was actively applied. For more intense forcing, nonpe-
riodic (chaotic or turbulent) flows were observed, as well as solutions
where periods longer than the pulsating period of the monopoles
appeared. However, no such cases are presented here and they may
be the object of future investigations.

Supplementary Materials
This PDF file includes:
Supplementary Text

Figs.S1to S5
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