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P H Y S I C S

Manipulating the direction of turbulent energy flux via 
tensor geometry in a two-dimensional flow
Xinyu Si1, Filippo De Lillo2, Guido Boffetta2, Lei Fang1,3*

In turbulent flows, energy flux, the cornerstone of turbulence theory, refers to the transfer of kinetic energy across 
different scales of motion. The direction of net energy flux is prescribed by the dimensionality of the fluid system: 
Energy cascades to smaller scales in three-dimensional flows but to larger scales in two-dimensional (2D) flows. 
Manipulating energy flux is a formidable task because the energy at any scale is not localized in the physical space. 
Here, we report a theoretical framework that enables control over energy flux direction. On the basis of this frame-
work, we conducted experiments and direct numerical simulations, producing a 2D turbulence with forward en-
ergy flux, contrary to classical expectations. Beyond theory, we discuss how our theoretical framework can have 
profound applications and implications in natural and engineered systems across length scale ranges from 10−3 
to 106 meters, including enhanced mixing of microfluidic devices, biologically generated turbulence, breaking 
persistent coastal transport barriers, and ocean energy budget.

INTRODUCTION
Turbulence governs the motion of many fluid systems, including the 
oceans and atmosphere, and serves as an efficient mechanism for 
mixing substances. From a theoretical point of view, turbulence is 
the quintessential example of a nonlinear system far from equilibri-
um with many degrees of freedom. Therefore, any advancement in 
understanding turbulence has substantial implications and applica-
tions across multiple scientific fields.

Navier-Stokes (NS) turbulence is characterized by energy flux be-
tween different scales of motion. The direction of the net energy flux is 
predetermined by the dimensionality of the flow (1–5). Heuristically, 
in three-dimensional (3D) turbulence, energy injected at macroscopic 
scales generates large eddies that break down into progressively small-
er ones. This energy transfer toward smaller scales, known as forward 
energy flux, is eventually halted by viscous dissipation (1, 6). In con-
trast, in two-dimensional (2D) turbulence, energy is transferred from 
the scales where it is injected to larger scales—a process known as in-
verse energy flux. This energy is then either dissipated or accumulated 
at the largest available scale (Fig. 1A) (7–9).

Here, we study an intriguing yet pragmatic question of whether 
the direction of net turbulent energy flux can be manipulated by a 
suitable forcing scheme. Our manipulation approach is based on a 
simple observation that the turbulent cascade process can be recast 
into a mechanical process (10) where stress (analogous to force) and 
the rate of strain (analogous to displacement) at different scales of 
motion can work with or against each other to generate positive or 
negative work between scales. In 2D turbulence, both stress and the 
rate of strain are represented as second-order tensors. When the 
stress tensor aligns with the rate of strain tensor, small scales do 
work on larger scales, resulting in an inverse energy flux. Converse-
ly, forward energy flux emerges when these two tensors are perpen-
dicular (Fig. 1). This mechanical picture immediately underscores 
the critical role of geometry in determining the direction of spectral 
energy flux. The key to manipulating energy flux lies in controlling 

the alignment between these two tensors. If this intuitive framework 
holds, it could enable the generation of unconventional types of NS 
turbulence—specifically, 3D turbulence with a net inverse energy 
flux and 2D turbulence with a net forward energy flux. Here, we fo-
cus on manipulating the 2D flow and show the successful control of 
net energy flux direction through both electromagnetically driven 
thin-layer flow experiments and direct numerical simulations. The 
framework can be extended to 3D flows as well.

RESULTS
Theoretical framework of tensor alignment
Filtering is an archetypal method for examining interactions between 
different scales in a nonlinear system. By applying a filter to a nonlin-
ear equation at a given length scale, the nonlinearity produces new 
terms in the filtered equation that capture the interaction between the 
degrees of freedom that are retained and those that are removed. In 
other words, these new terms act as source or sink terms for the re-
maining degrees of freedom. For example, applying a low-pass filter, 
i.e., removing scales of motion that are smaller than a certain cutoff 
length scale ( L ), to the NS equations introduces the subgrid-scale 
stress τ(L)
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 into the filtered NS equations, where 
ui is the ith component of the fluctuating velocity. This stress term 
depicts the momentum transfer across the length scale L . Similarly, 
inspecting the equation of motion for filtered kinetic energy 
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 ) yields a spectral energy flux term Π(L) = −τ
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 , 
representing the energy flux between unresolved and resolved scales, 
where s(L)
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= (1∕2)
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 is the filtered rate of strain 

(see Materials and Methods). Recalling the analogy introduced earli-
er, τ(L)

ij
 is analogous to force and s(L)

ij
 is analogous to displacement. The 

inner product between these terms determines the work done from 
filtered (smaller) scales to retained (larger) scales through length 
scale L , which represents the spectral energy flux between scales of 
motion. Manipulating Π(L) is the primary goal of this study.

This interpretation highlights the critical importance of geomet-
ric alignment between the two tensors τ(L)

ij
 and s(L)

ij
 (Fig. 1). When τ(L)

ij
 

and s(L)
ij

 are aligned, Π(L)
< 0 , indicating inverse energy flux toward 
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larger length scales. Conversely, when τ(L)
ij

 and s(L)
ij

 are perpendicular, 
Π(L)

> 0 , indicating forward energy flux toward smaller length 
scales (Fig. 1). Furthermore, Π(L) can be reexpressed as a function 
that depends on the geometric alignment between the eigenframes 
of τ(L)

ij
 and s(L)

ij
 . In the 2D flow, this relationship is described by the 

following equation (10, 11)

where σ and γ are the largest eigenvalues of the rate of strain and the 
deviatoric part of stress tensors, respectively, and θ(L) is the angle 
between the corresponding (extensional) eigenvectors σ̂ and γ̂ . It is 
then clear that the alignment of the stress and the rate of strain ten-
sor can determine not only the magnitude but also the direction of 
the energy flux. When θ(L) < π∕4 , energy fluxes to larger scales, 
generating inverse energy flux; when θ(L) > π∕4 , energy fluxes to 
smaller scales, resulting in forward energy flux. No net energy flux 
occurs when θ(L) = π∕4 . In typical isotropic 2D turbulent flows, the 

alignment between stress and the rate of strain tensor is self-
organized, leading to a net inverse energy flux. Previous researchers 
have proposed treating η = cos

(
2θ(L)

)
 as a measure of the efficiency 

of energy flux between scales (10). The rationale behind this defini-
tion is that η represents the ratio between the observed energy flux 
and the maximum geometrically achievable flux, as determined by 
tensor geometry. It was found that the efficiency in typical isotropic 
2D turbulent flow is relatively low, with an η of only 27%, as reported 
in previous experiments (10), indicating that a large portion of the 
geometrically possible energy flux is not realized.

In principle, by generating a background flow with an ordered 
rate of strain and perturbing it with directionally biased stresses, we 
can control the tensor geometry between stress and the rate of strain 
tensors, thereby manipulating the efficiency of the net energy flux 
based on Eq. 1. In this study, we selected hydrodynamic shear as the 
background flow, establishing a well-organized large-scale rate of 
strain orientation (Fig. 2B), and perturbed it with a directionally bi-
ased monopole-like perturbation (Fig. 2C). The direction of γ̂ from 

Π(L) = −2γσcos
(
2θ(L)

)
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Fig. 1. Spectral energy flux and tensor geometry. (A) Schematic representation of spectral energy flux in turbulence. For forward energy flux (red), energy injected at 
large scales cascades to progressively smaller scales until it is dissipated by viscous forces. For inverse energy flux (blue), energy is injected at small scales and then trans-
ferred to progressively larger scales. This energy is either dissipated or piles up at the largest scale available within the system, defined by the system’s size. These 
processes are quantitatively described by the energy spectrum E(k), which denotes the distribution of kinetic energy across modes with wave number k = 2π∕ L . (B) In-
stantaneous velocity field (gray arrows) overlaid on a spectral energy flux map for 2D weakly turbulent flow. Consistent with the color scheme in (A), the red color repre-
sents forward energy flux, and blue stands for inverse energy flux. The intensity of the color indicates the magnitude. (C) Large-scale velocity u(L)

i
 (gray arrows) for the same 

2D turbulent flow, with L∕W = 0.8 , where W  is half of the domain size. Purple double-headed arrows indicate the local direction of σ̂ , and the background color shows 
the magnitude of σ . (D) Small-scale velocity ui − u

(L)

i
 (gray arrows) for the same 2D turbulent flow. Green double-headed arrows indicate the local direction of γ̂ , and the 

background color shows the magnitude of γ . (E) Zoomed-in view of tensor geometry, showing the alignment between the extensional eigenvectors of the rate of strain 
tensor (purple) and of the stress tensor (green). The local spectral energy flux depends on the tensor geometry, as described by Eq. 1. The alignment between these two 
eigenvectors in the circled region is consistent with the energy flux direction in (B).
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the monopole-like perturbation is found to align with the direction 
of the applied monopole forces (see Materials and Methods). Con-
sequently, by controlling the mechanical angle θ between the direc-
tion of σ̂ , associated with the background shear flow, and the direction 
of the monopole forces, we can substantially manipulate the direc-
tion of the spectral energy flux.

Experiments and numerical simulation of energy 
flux manipulation
To apply this theoretical framework for manipulating energy flux, 
we conducted experiments using an electromagnetically driven 
thin-layer flow system (Fig. 2A) (8, 12, 13). We generated a steady 
shear flow to establish a well-ordered large-scale rate of strain via 
the Lorentz body force that arose from the interaction between the 
magnetic field produced by two stripes of magnets with opposite 
polarities and a direct current passing through the electrolyte layer 
(Fig. 2B). The physical perturbation was introduced using a 5 by 5 
grid of rods driven by a programmable linear actuator at a velocity 

of 1 cm/s in a forward-and-back manner (Fig. 2C). The flow was 
then recorded and analyzed using a particle tracking velocimetry 
algorithm (see Materials and Methods) (14).

The numerical simulations were performed using a standard ful-
ly dealiased pseudospectral code (15, 16). NS equations were inte-
grated on a 2D domain with a second-order Runge-Kutta temporal 
scheme. The linear hydrodynamic shear was generated by simulat-
ing a Couette flow between two walls. Local physical perturbation 
was applied via a 5 by 5 array of force monopoles. The strength of 
monopoles had a pulsating force varying sinusoidally (see Materials 
and Methods).

Manipulated net spectral energy flux
We summarize our experimental and simulation results of energy 
flux manipulation in Fig. 3 (17), where a considerable correlation 
between the controlled mechanical angle ( θ ) and the measured ten-
sor alignment angle ( θ(L) ) was observed. In our experiments, we 
conducted three control cases. The first involved pure shear flow 
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Fig. 2. Experimental setup and characterization of the background flow and physical perturbations. (A) Schematic of the experimental setup. The cross section of 
the experimental setup illustrates the thin fluid layer and tracer particles at the surface (not to scale). A pair of electrodes conducts direct current horizontally through the 
electrolyte. The vertical magnetic field from the permanent magnets interacts with the horizontal direct current to generate the Lorentz force on the fluid, which acts 
nearly within the plane. The tracer particle on the fluid’s surface represents the 2D space under study. A rod array is controlled by a linear actuator, which can introduce 
directionally biased physical perturbations. (B) Flow field of the hydrodynamic shear (gray arrows). Red double-headed arrows indicate the extensional direction of s(L)

ij
 ( ̂σ ). 

(C) Flow field of a moving rod array in quiescent fluid (gray arrows). Red double-headed arrows indicate the extensional direction of τ(L)
ij

 ( ̂γ ). The blue curves in (B) and (C) 
represent the assembled average of the v component of velocity along the x axis, normalized by the root-mean-square velocity U. Shaded areas indicate the standard 
deviation of the v component of velocity normalized by U. The assembled average was calculated both temporally and spatially along the y axis. Arrows in the velocity 
and eigenvector fields were downsampled for clearer visualization.
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Fig. 3. Experimental and numerical results of energy flux manipulation. This figure illustrates how the mechanical angle, θ, affects tensor alignment, subsequently 
influencing energy flux in both experimental and simulation results. (A and H) Probability density functions (PDFs) of tensor alignment angle ( θ(L) ) with L∕W = 0.8 for 
both experiments and simulations, where W  is half of the domain size for experiments and simulations, showing that different forcing conditions produce distinct tensor 
alignment distributions. (B and I) Temporal evolution of spatially averaged Π(L) with L∕W = 0.8 for experiments and simulations, respectively. (C and J) Π(L) at different L 
values for experiments and simulations, respectively. The inset of (J) is the Π(L) at L∕W = 0.8 for a range of mechanical angle ( θ ). (D and K) Third-order structure function 
S
3
 at different displacement r for experiments and simulations, respectively. (E to G and L to N) Snapshots of spatial distribution of energy flux for θ ≈ π∕2 , θ ≈ π∕4 , and 

θ ≈ 0 , respectively. (E) to (G) correspond to experiments and (L) to (N) correspond to simulations. The gray arrows are flow velocity vectors, and the color maps show the 
magnitude of spectral energy flux Π(L) All times are normalized by T  , which represents the rod array’s moving period for experimental results and the blinking period of 
the monopole array for simulation results. All lengths are normalized by half the domain size. Π(L) is normalized by viscous dissipation 2νΩ , where Ω is the spatially aver-
aged vorticity square. Overall, these panels collectively demonstrate that the direction and magnitude of turbulent energy flux can be systematically manipulated via 
tensor alignment, and this manipulation is observed consistently across experimental and numerical systems.
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without perturbation. In the second case, we introduced a static rod 
array into the shear flow, ensuring that any changes in tensor geom-
etry were not due to the rod array acting as a new boundary condi-
tion. The third control case was the rod array moving in a quiescent 
fluid to rule out the possibility that the energy flux manipulation 
was due to the rod array moving alone. As shown in Fig. 3A, in all 
three control cases, θ(L) was symmetrically distributed around π∕4 , 
resulting in an efficiency η close to zero. Consequently, we observed 
only a relatively weak spectral energy flux in these control cases 
(Fig. 3C).

When we aligned the added stress with the background rate of 
strain ( θ ≈ 0 ), we observed a salient shift of θ(L) toward 0 (Fig. 1A). 
Similarly, we observed a substantial shift toward θ(L) = π∕2 as we 
applied the added stress perpendicularly with the background rate 
of strain ( θ ≈ π∕2 ). As our manipulation set θ to approximately 
π∕4 , θ(L) was symmetrically distributed around π∕4 , resulting in 
only a small net energy flux between scales (Fig. 3, A and H). The 
direct numerical simulations allowed for fine-tuning the direction 
of the monopole array. In the inset of Fig. 3J, we present the energy 
flux as a function of different mechanical angles θ . We see that the 
energy flux varied with θ in a sinusoidal manner that reflected the 
form of  Eq.  1. Theoretically, the maximum inverse energy flux 
should occur when θ(L) = 0 , and the maximum forward energy 
flux will emerge when θ(L) = π∕2 . In our observations, the maxi-
mum inverse and maximum forward angle alignments occurred at 
θ = π∕16 and θ = π∕2 , respectively. The slight discrepancy be-
tween the optimal θ and optimal θ(L) for maximum inverse energy 
flux is likely due to the engineered tensor alignment being slightly 
altered during the coupling, an inherent nonlinear process, be-
tween the physical perturbation and the background flow.

We calculated the energy flux between scales based on the mea-
sured stress and the rate of strain tensors. In Fig. 3 (B and I), we 
present the time series of the spatially averaged energy flux. Al-
though the time series of energy flux correlated with the forward-
and-back motion of the rod array in experiments and with the 
blinking of the monopoles in simulations, the energy flux directions 
remained consistent with the manipulated geometric alignments. 
We also calculated the net energy flux across different cutoff scales 
(Fig. 3, C and J). Consistent with the tensor geometry statistics, the 
motion of the rod and monopole arrays considerably influenced the 
direction of the energy flux by introducing directionally biased 
small-scale stresses.

A further observable related to the direction of energy transfer is 
the third-order longitudinal structure function S3(r) =

⟨[
Δru ⋅ êl

]3⟩ , 
where êl is the unit vector in the longitudinal direction and 
Δru = u

(
x+ rêl

)
− u(x) is the velocity difference over displacement 

r . While the filtering approach in Eq. 1 accesses different scales by 
spatial filtering, S3(r) encodes the information on the dynamics at 
each scale via the statistics of the velocity difference at the corre-
sponding displacements in the physical space. As shown in Fig. 3 (D 
and K), the third-order structure function changes sign with θ . This 
can be interpreted in view of well-known results valid for the iner-
tial range of large-Reynolds-number turbulent flows. In that case, 
one can show that S3 = −Cϵr , where ϵ is the (positive) energy dissi-
pation rate, while C is a constant whose sign depends on the direc-
tion of the cascade. In 3D flows (where the flux is positive), C =

4

5
 

(18), while C = −
3

2
 (19) in the 2D flow, where the energy flux is 

negative and an inverse, upscale energy cascade is observed. Al-
though, at our relatively low Reynolds numbers, the scaling results 
do not apply, one can expect S3 < 0 for a direct energy flux and 
S3 > 0 for an inverse one, which is consistent with the observation. 
Therefore, the sign of S3 provides an additional signature of the di-
rection of spectral energy flux, complementing the filtering results. 
We emphasize that S3(r) is used here only as a qualitative cross-
check rather than an independent proof of energy flux direction. It 
has been highlighted that caution is needed when interpreting S3(r) 
in 2D turbulence because the S3(r) law varies with different flow 
conditions and nonideal effects, such as large-scale drag, can con-
siderably affect the sign of S3(r) (20).

Notably, we have both experimentally and numerically produced 
2D weak turbulence with net forward energy flux, a phenomenon 
contrary to classical expectations (Fig. 3, E and L). This is particu-
larly noteworthy because traditional 2D turbulence, as predicted by 
Kraichnan (3), exhibits a net inverse energy flux. The creation of this 
atypical type of turbulence provides a unique opportunity to com-
pare it with its traditional counterpart, potentially deepening our 
understanding of the turbulent cascade process. Specifically, by pro-
viding a mechanical perspective on spectral energy transfer, our 
findings suggest a framework for probing the longstanding question 
of why, statistically, naturally occurring 2D turbulent flows tend to 
maintain a net inverse energy flux—or, in the language of tensor 
geometry, why they favor an average alignment angle below π/4 
(21, 22). From an application perspective, reversing the natural di-
rection of energy flux may induce profound kinematic and dy-
namical differences that may not only enhance our understanding 
of natural processes but also improve our ability to control engi-
neered systems.

DISCUSSION
Our analysis demonstrates that directionally biased physical pertur-
bation can couple with the background flow, causing distinct yet 
predictable directions of spectral energy flux. Directionally biased 
physical perturbations are prevalent in both natural and engineered 
systems. Therefore, our results have broad applications and implica-
tions in both natural and engineered systems, spanning length 
scales from millimeters in microfluidic mixers to hundreds of kilo-
meters in geophysical flows (Fig. 4).

On the millimeter scale, microfluidic mixers often suffer from 
poor mixing (23, 24). Our findings offer valuable insights into ad-
dressing this issue. By engineering the flow in microfluidic mixers 
at a low Reynolds number to induce forward energy flux, it is 
possible to generate smaller scales of motion, thereby enhancing 
mixing efficiency.

Biologically generated ocean mixing plays a crucial role in un-
derstanding the biogeochemical structure of the water column in 
climatically important regions of the ocean (25–27). Contrary to 
traditional belief, a recent study has shown that a swimmer’s ability 
to mix the local flow is not an immutable trait but varies depending 
on the swimmer’s alignment relative to local shear. The study dem-
onstrated that flows generated by a group of swimmers can couple 
with background flows to enhance mixing (12). Moreover, the inter-
action between the directionally biased stress from a swimmer and 
a background hydrodynamic shear can induce appreciable differ-
ences in spectral energy transfer properties and modify the strength 
of background hydrodynamic shear (13). Therefore, the coupling 
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between directionally biased stress from swimmers and background 
flow is of great importance in understanding the impact of biologi-
cally generated turbulence on ocean mixing.

In coastal oceans, Lagrangian Coherent Structures (LCSs), which 
can span several kilometers, act as transport barriers in geophysical 
flows, hindering effective mixing in coastal areas and potentially 
contributing to the formation of ocean forbidden zones (28, 29). 
Disrupting these LCSs in coastal regions could alleviate these for-
bidden zones and improve the health of coastal ecosystems. Our 
theoretical framework offers a method to engineer optimal small-
scale stress that couples with the background flow to enhance for-
ward energy flux. The enhanced forward energy flux will dump 
energy that sustains the large-scale LCSs to smaller scales, where, 
eventually, it can be dissipated by viscosity. In the Supplementary 
Materials, we present a theoretical estimation demonstrating the 
feasibility of manipulating LCSs. This estimation suggests that it is 
possible to substantially influence LCSs using only 0.05% of the en-
ergy that sustains them.

In geophysical systems, wind stresses consistently do positive 
or negative work to facilitate energy exchange between atmo-
spheric and oceanic systems (30–32). Beyond this traditional 
first-order view of energy exchange, our results indicate that a 
profound second-order effect may arise when local wind stresses 
act as biased stresses. These biased wind stresses could interact 
with the rate of strain of the oceanic flow, leading to distinct di-
rections of energy flux among different scales of motion in oce-
anic flows. While this remains a hypothetical extension and has 
not yet been tested, this hypothesis provides valuable insights and 

offers a promising framework for understanding the multiscale dy-
namics of geophysical flows. In the context of climate change, altera-
tions in the flow patterns of either atmospheric or oceanic systems can 
influence not only the energy exchange between these systems but 
also the direction of energy flux within the oceanic flow system, po-
tentially reshaping large-scale circulation and transport dynamics.

To conclude, we have developed a theoretical framework for ma-
nipulating the direction of spectral energy flux through tensor ge-
ometry. This theoretical framework was demonstrated through the 
successful manipulation of spectral energy flux of the 2D flow in 
both experiments and simulations. Beyond its theoretical signifi-
cance, our framework has profound applications and implications 
for natural and engineered systems ranging from microfluidic mix-
ers and biologically generated turbulence to geophysical flows.

MATERIALS AND METHODS
Filtering approach and spectral energy flux term
Filter space technique
The filter space technique is based on a filtering process (33) and can 
extract spatially localized scale-to-scale energy flux information 
from measured flow fields (34). The filtering process can be gener-
ally expressed as a convolutional integral (35). For example, the fil-
tered component of a velocity field has the form

u
(L)

i
(x) ≡ � G(L)(r, x)ui(x−r)dr (2)

10-2
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Fig. 4. Applications and implications in natural and engineered systems. Spectral energy flux manipulation can occur in systems spanning scales from 10−3 to 106 m. 
This manipulation occurs either through engineering (A and C) or via natural processes (B and D). (A) By engineering appropriate boundary conditions that interact with 
fluid to generate directionally biased stress, we can force forward energy flux even at a Reynolds number of order 1, as our theoretical framework remains valid. The in-
crease in small-scale energy will generate fine-scale eddies that facilitate mixing in microfluidic mixers. (B) In nature, biologically generated agitation is found to be able 
to couple with the background hydrodynamic shear to generate either forward or inverse energy flux. This process can either attenuate or strengthen the background 
hydrodynamic shear, affecting the local biogeochemical structure of the water column. (C) Engineered boundary conditions or directionally biased jets with moderate 
energy can considerably affect LCSs in coastal oceans. In Materials and Methods, we present a theoretical estimation of the energy power needed to actively manipulate 
LCSs. (D) Climate change will profoundly alter wind fields and oceanic flows. Our results suggest that the altered wind stress could profoundly affect the direction of en-
ergy flux in the oceanic flow because of varying alignments between wind stress and oceanic flow.
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where G(L) is a kernel acting as a low-pass filter, with the superscript 
L indicating the cutoff length scale. Our result is not sensitive to the 
specific nature of the filter kernel. Here, we used a sharp spectral 
filter (with a cutoff length L ) smoothed by a Gaussian window to 
avoid the ringing effect.

To obtain the spectral energy flux term Π(L) , we start from fil-
tering the NS equations that govern the motion for incompress-
ible fluids

in which ui is the ith component of velocity, ρ is the density, p is the 
pressure, and ν is the kinematic viscosity. After applying the filter, we 
can obtain the evolution equation for the filtered velocity field u(L)

i
 as

where τ(L)
ij

=
(
uiuj

)(L)
− u

(L)
i
u
(L)
j

.
Taking the inner product of u(L)

i
 and the filtered momentum Eq. 4, 

we can obtain the equation of motion for the filtered kinetic en-
ergy E(L) =

1

2
u
(L)
i
u
(L)
i

 as

where Π(L) = −τ
(L)
ij
s
(L)
ij

 with s(L)
ij

=
1

2

(
�u

(L)

i
∕ �xj+ �u

(L)

j
∕ �xi

)
 being 

the rate of strain tensor for the filtered velocity field. On the right-
hand side of Eq. 5, the term with J (L)

i
 assembles all the terms that 

represent the spatial currents of filtered energy. The second term 
represents the viscous damping of energy within the resolved scales. 
The term Π(L) , in particular, represents the spectral energy flux be-
tween scales smaller than L and scales larger than L. Π(L)

< 0 indi-
cates inverse energy flux toward larger length scales. Π(L)

> 0 
indicates forward energy flux toward smaller length scales.
Spectral energy flux term decomposition
The stress tensor τ(L)

ij
 can be further decomposed into three compo-

nents (4, 35, 36) on the basis of the type of triad interaction as

The first component τ(L)
L

=
(
u
(L)
i
u
(L)
j

)(L)

− u
(L)
i
u
(L)
j

 is a small-scale 

quantity composed of two large-scale quantities. The second compo-

nent τ(L)
C

=
[
u
(L)
i

(
uj−u

(L)
j

)](L)
+
[
u
(L)
j

(
ui−u

(L)
i

)](L)
 is a large-scale 

quantity composed of one large-scale quantity and one small-scale 

quantity. The third component τ(L)
S

=
[(

ui−u
(L)
i

)(
uj−u

(L)
j

)](L)
 is a 

large-scale quantity composed of two small-scale quantities. In large 
eddy simulation, the three terms are called Leonard stress, cross 

stress, and subgrid-scale Reynolds stress, respectively. We take these 
names here for convenience. However, note that ui here contains in-
formation about all scales of motion and, hence, the term τ(L)

ij
 in-

volves no modeling, which is different from large eddy simulation. 
The inner products of these components with s(L)

ij
 give the corre-

sponding components of the spectral energy flux Π(L) as Π(L)
L

 , Π(L)
C

 ,  
and Π(L)

S

In (36), it has been shown that the subgrid term Π(L)
S

 carries most 
of the net spectral energy flux information between the large and 
small scales. The Leonard term and the cross term involve more 
subtle interpretations. Using a simple cellular flow, Liao and Ouellette 
(36) showed that the Leonard term is dominated by the transfer of 
energy between different resolved wave vectors rather than the 
transfer of energy between large and small scales. However, after 
spatial averaging, they found that the Leonard term and crossing 
term have a negligible contribution to the net spectral energy flux, 
which is also verified by our experiment data of a 2D turbulent flow 
(see fig. S1).

Despite the theoretically negligible contribution to the spectral 
energy flux by the Leonard term and the cross term, including the 
Leonard term and the cross term will cause contamination to the 
calculated spatially averaged spectral energy flux, especially in re-
gions near boundaries. Specifically, this contamination comes from 
edge padding when applying a filter to the measured data near 
boundaries. Padding involves filling artificial data (here, we used 
zero-padding) into the regions out of boundaries where there are no 
measured data so that the filtering process can be applied near 
boundaries. The magnitude of this padding error is small compared 
to the magnitude of the small-scale fluctuations ( ui − u

(L)
i

 ) created 
by the moving rods. However, this padding error will be magnified 
when it is added to or multiplied by a large-scale velocity ( u(L)

i
 ). 

Therefore, here, we used the subgrid flux term Π(L)
S

 in our analysis 
instead of Π(L) . For simplicity and clarity, we omitted the subscript in 
both the figures and the main text.

Theoretical background for tensor geometry
Rewriting the spectral energy flux term
The theory of tensor geometry is described in detail in (10,  37). 
Here, we just briefly introduce the necessary information. Because 
the rate of strain tensor s(L)

ij
 is symmetric and deviatoric, we can just 

consider the deviatoric part of the stress tensor when calculating the 
spectral energy flux because only this part will affect the inner 

�ui

�t
+uj

�ui

�xj
=−

1

ρ

�p

�xi
+ν

�
2ui

�xj �xj
and

�ui

�xi
=0 (3)
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(L)
i

�t
+u

(L)
j

�u
(L)
i

�xj
=−

1

ρ

�p(L)
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+ν

�
2u

(L)
i

�xj �xj
−

�τ
(L)
ij

�xj
(4)

�E(L)

�t
= −

�J
(L)
i

�xi
− ν

�u
(L)
i

�xj

�u
(L)
j

�xi
− Π(L) (5)

τ
(L)
ij

=
(
u
(L)
i
u
(L)
j

)(L)

−u
(L)
i
u
(L)
j

+
[
u
(L)
i

(
uj−u

(L)
j

)](L)
+
[
u
(L)
j

(
ui−u

(L)
i

)](L)

+
[(

ui−u
(L)
i

)(
uj−u

(L)
j

)](L)
(6)

Π(L) = Π
(L)
L

+ Π
(L)
C

+ Π
(L)
S (7)

Π
(L)
L

= −τ
(L)
L
s
(L)
ij (8)

Π
(L)
C

= −τ
(L)
C
s
(L)
ij (9)

Π
(L)
S

= −τ
(L)
S
s
(L)
ij (10)
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product (38). Both the rate of strain tensor and deviatoric part of the 
stress tensor have two eigenvalues with the same magnitude and op-
posite sign. The eigenvector corresponding to the positive eigenval-
ue (referred to as extensional) and the eigenvector corresponding to 
the negative eigenvalue (referred to as compressional) are orthogo-
nal. We label the extensional eigenvalue for the stress tensor as γ and 
that for the rate of strain tensor as σ . Working in the eigenbasis of 
the stress tensor and marking the angle between the extensional ei-
genvectors of these two tensors as θ(L) , we have

Note that using τ(L)
ij

 or τ(L)
S

 does not affect the derivation of Eq. 11. 
Because both γ and σ are positive, we can see that the direction of 
spectral energy flux depends only on the alignment of the eigen-
frames of the two tensors.
Tensor geometry of the large-scale shear
Through the perspective of tensor geometry, there arises the possi-
bility of manipulating the spectral energy flux by forcing the small-
scale stress to align with the large-scale rate of strain in any intended 
angle. To demonstrate this, first consider a cutoff length scale L . At 
large scales, there exists a steady shear flow whose width is much 
larger than L . To simplify this problem, we set the steady shear flow 
with streamlines aligning with the y axis and with no stream-wise 
velocity gradient. In the x direction, the shear has a constant veloc-
ity gradient K for the vertical velocity component. The rate of strain 
tensor of the shear flow at any length scale L is then

Because this matrix is traceless and symmetric, it has two eigen-
values of the same magnitude but with opposite signs. The two ei-
genvectors are orthogonal, and the angle between the extensional 
eigenvector and the x axis has an angle of π∕4 (or 5π∕4 ). If we apply 
disturbances to the large-scale shear flow with injection length 
scales much smaller than L , the nonlinear coupling between the ap-
plied small-scale stresses and the background flow will result in tur-
bulent flow that transfers energy through scales.
Tensor geometry of the small-scale stresses
Here, we demonstrate how we generate engineered small-scale 
stress through physical perturbations. For simplicity, consider the 
small-scale disturbance as a velocity vector bi that forms an angle θb 
with the x axis. Given enough scale separation between the small-
scale disturbance and the large-scale shear, we would expect that 
most of the information induced by the small-scale disturbance will 
be included in the residue after filtering. Therefore, we can estimate 
that bi ≈ ui − u

(L)
i

 . The deviatoric part of the subgrid-scale Reynolds 
stress is thus

We note that the filtering process will not affect the eigenvector 
direction. We can get that the extensional eigenvector for the devia-
toric subgrid-scale Reynolds stress τ(L)

S
 is in the direction of (

1

tan
(
θb
)
)

 . Therefore, the direction of the extensional eigenvector 

of τ(L)
S

 is in parallel with the direction of bi.
From the derivations above, we can see that the directions of the 

extensional eigenvectors for both s(L)
ij

 and τ(L)
S

 are known even before 
applying physical perturbations to the background flows. Therefore, 
on the basis of Eq. 11, it is possible to manipulate the direction of 
spectral energy flux by controlling the alignment between the eigen-
frames of these two tensors.

Quasi-2D turbulence experiments
Apparatus and particle tracking
The main body for the quasi-2D flow system consisted of an acrylic 
frame, a pair of copper electrodes installed on the opposite sides of 
the setup, and a piece of tempered glass in the center separating a 
thin layer of salt water on top and an array of cylindrical magnets 
below. The dimensions of the main frame and the glass floor in the 
center were 96.5 cm by 83.8 cm and 81.3 cm by 81.3 cm, respec-
tively. We coated the upper surface of the glass with hydrophobic 
materials (Rain-X) to reduce friction and covered the lower surface 
by a light-absorbing blackout film. Beneath the glass, cylindrical 
magnets were organized in desired patterns to drive flow in different 
directions. Each magnet (neodymium grade N52) had an outer di-
ameter of 1.27 cm and a thickness of 0.64 cm, with the maximum 
magnetic flux density of 1.5 T at the magnet surface. We loaded a 
thin layer (6-mm thickness) of 14% by mass NaCl solution on top of 
the glass. The solution had a density ρ = 1.101 g/cm3 and a viscosity 
ν = 1.25 × 10−2 cm2/s. By passing a direct current through the con-
ducting solution layer, we were able to drive a quasi-2D flow with 
the resulting Lorentz body force and control the flow Reynolds 
number by adjusting the direct current intensity. The 2D was well 
kept throughout our experiments.

To track the flow, we seeded green fluorescent polyethylene trac-
er particles (Cospheric) into the fluid. The tracer particles had a 
density of 1.025 g/cm3 and diameters ranging from 106 to 125 μm. 
The Stokes number of the particles was of order 10−3, which means 
that the particle could accurately trace the flow (39). Because the 
density of the particles was lower than that of the working fluid, they 
would float on the gas-liquid interface. Because of surface tension 
effects, they would show a slow clustering tendency, which is known 
as the “cheerios effect” (40). To reduce the surface tension, a small 
amount of surfactant was added to the fluid to minimize the impact 
on tracer movements. Our measurement of tracers in quiescent 
fluid showed that the “cheerios effect” was negligible.

We used a machine vision camera (Basler, acA2040-90μm) to 
image the flow that was illuminated by blue light-emitting diode 
lights. We recorded an 11.4-cm by 11.4-cm region at the center of 
the setup with a resolution of 1600 pixels by 1600 pixels. About 
18,000 to 22,000 particles could be recorded at a frame rate of 60 
frames per second. With this particle density and frame rate, we 
could obtain highly spatiotemporally resolved velocity fields 
through a particle tracking velocimetry algorithm (14). For easi-
er use, we then interpolated the measured flow onto regular Eu-
lerian grids using cubic interpolation with a grid size of 12 pixels 
(0.85 mm), which gave a grid density not higher than the original 
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particle density. The final analysis to obtain  Figs.  2 and  3 was 
performed on a 7.4-cm by 7.4-cm domain at the center of the 
measured area to reduce errors near boundaries caused by edge 
padding during filtering.
Two-dimensional steady shear flow with moving rods
We used two stripes of magnets with opposite polarity. The distance 
between the two stripes was 20 cm. When a direct current was con-
ducted through the fluid, the two stripes generated a hydrodynam-
ic shear with an ordered rate of strain (Fig.  2B). To apply the 
small-scale stress to couple with the rate of strain in the background 
flow, we built a 5 by 5 grid of rods and drove the grid with a pro-
grammable linear actuator. The diameter of each rod was 2 mm, 
and the center-to-center space between neighbor rods was 2.5 cm. 
The rod array moved back and forth at a speed of 1 cm/s to generate 
directionally biased stress (Fig. 2C). We define Reynolds number 
Re = UW∕ν , where U  is the root-mean-square velocity, W is half of 
the domain width for analysis, and ν is the kinematic viscosity. The 
Reynolds number of the resulting flow was 210.

2D turbulence simulation
The numerical simulations were carried out using a standard fully 
dealiased pseudospectral code (15, 16). Equation 3 was integrated 
on a 2D domain of size Lx × Ly , with a second order Runge-Kutta 
temporal scheme. To simulate a configuration similar to that of the 
experiment we used as a base flow, a linear shear flow was obtained 
by imposing the boundary conditions u

(
Lx∕2, y

)
= u+ =

(
0, +Us

)
 

and u
(
−Lx∕2, y

)
= u− =

(
0, −Us

)
 at the walls x = ± Lx ∕2 , with 

periodic boundary condition on the y direction. The boundary con-
ditions were implemented via a penalization method (41). Specifi-
cally, at each time step, the body force

was imposed, with λ being a large parameter. The scalar function ϕ 
is a mask with support only within a small distance rb of the bound-
aries and defined as ϕ(x) = cos

(
πx

2rb

)
 if ∣x ∣ < rb and ϕ(x) = 0 other-

wise. All the simulations presented here are performed with shear 
velocity Us = 1 and domain sizes Lx = 6.136 and Ly = 2π (arbitrary 
units). We used a numerical resolution of Nx × Ny = 500 × 512 grid 
points, which is sufficient to resolve the smallest scale in the flow, 
and the support of each penalization mask was 2rb = 9.8 × 10−2 cor-
responding to eight grid points.

The local forcing was applied using 25 force monopoles 
whose centers were organized on a regular 5 by 5 square grid 
with side 2.0 (approximately one-third of the span of the effec-
tive numerical channel). Each monopole applied a pulsating 
force Fi = f sin(ωt)G

(
xi

)
e
(
θm

)
 , where xi is the position of the ith 

monopole, G(x) is a two-dimensional normalized Gaussian with 
a half-width of four grid points, and e

(
θm

)
=
(
− sinθm, cosθm

)
 

sets the direction of the force monopole at an angle θm with re-
spect to the y axis. The amplitude of the monopole was f = 0.38.

All the numerical simulations were started from a fluid at rest 
u = 0 and carried on until a shear flow u =

(
0, 2xUs∕Lx

)
 was pro-

duced. A kinematic viscosity ν = 10−2 was used, which corresponds 
to a Reynolds number Re = ULx ∕(2ν) = 184 on the basis of the half 
channel width and the root-mean-square velocity U . After a steady 
state is reached, the forcing is applied with f = 0.38 and ω = 2π∕5 . 

Such parameters were chosen to provide close to maximum effect 
measured in terms of Π(L)

S
∕(2νΩ) , and they were kept fixed for all 

simulations while changing the value of θm . In all cases examined 
here, the resulting flow is periodic with the same periodicity of the 
local forcing (see the main text). The analysis was therefore per-
formed over one period with the same code used for the experimen-
tal results. The final analysis was conducted in a 2 by 2 domain at the 
center of the simulation domain to obtain the results in Fig. 3, where 
local forcing was actively applied. For more intense forcing, nonpe-
riodic (chaotic or turbulent) flows were observed, as well as solutions 
where periods longer than the pulsating period of the monopoles 
appeared. However, no such cases are presented here and they may 
be the object of future investigations.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S5
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