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Active particle systems, such as human crowds, are out of equilibrium posing a significant challenge
in identifying a suitable equation of state. However, several previous observations suggest that a
crowd’s speed distribution may conform to a two-dimensional Maxwell-Boltzmann distribution under
certain yet-to-be-determined conditions. Our research uncovers that the divergence between the
fluctuation velocity magnitude’s probability density function and its best 2D Maxwell-Boltzmann
fit diminishes in a power-law fashion with decreasing collision time scale between individuals. These
findings are robustly supported by both experimental data and simulations with diverse boundary
conditions and force potentials. The equilibrium characteristics of crowds are interpreted through
a canonical ensemble framework. Furthermore, we show that high pressure indicates equilibrium
characteristics in human crowds. Remarkably, we reveal the ideal gas law for human crowds without
resorting to any behavior assumption. We demonstrate the predictive capability of the ideal gas
law on both observational and modeling data. Our research highlights a new pathway to explore
and validate traditional thermodynamic quantities and laws in the setting of high-pressure human
crowds, advancing our understanding of active matter systems.

I. INTRODUCTION

Collective humans exhibit a range of behaviors. For
instance, individuals naturally form lanes in pedestrian
traffic, demonstrating an instinctual organization [1]. Al-
ternatively, panic situations, such as emergency evacua-
tions, can lead to uncontrolled jamming at exit points
due to heightened stress [2]. Under specific social set-
tings, Mexican waves were observed at sporting events.
There are two major perspectives in approaching human
crowds—microscopic (individual level) perspective and
the macroscopic (group level) perspective. From a mi-
croscopic perspective, researchers believe that individuals
follow a set of rules either consciously or subconsciously,
and the microscopic interactions percolate through scales
to generate larger-scale collective crowd behaviors, such
as lane formation [3, 4] and heading alignments [5]. On
the other hand, researchers taking a macroscopic per-
spective focused on group-level properties. They believed
that extracting individual interaction rules from obser-
vations of group behavior was a complex and nonlinear
inverse problem [6], and sometimes the inverse problem
could even be ill-posed because the same macroscopic
behavior could generate from different rule sets [7]. De-
spite the two distinctive perspectives, the two perspec-
tives are complementary, especially for the human crowd
[8, 9]. It is shown that microscopic interactions of hu-
mans can be surprisingly well reproduced computation-
ally, and the resulting macroscopic collective behavior is
not only qualitatively correct but also quantitatively sim-
ilar. The concept of “active matter” fittingly character-
izes human crowds, in which individuals, as constituent
elements, convert internal energy into motion, thus op-
erating out of equilibrium [6, 10–16]. Active matter sys-
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tems, unlike passive ones, continually consume energy to
drive their own dynamics, thereby making the utilization
of conventional thermodynamic methods formidable.

Nonetheless, few prior studies have postulated that
such crowds can display equilibrium characteristics under
specific yet unidentified conditions [17, 18]. For instance,
evidence of this phenomenon is exemplified in mosh pits,
where the observed speed distribution aligns remarkably
well with the two-dimensional (2D) Maxwell-Boltzmann
distribution [18].

The endeavor to identify under which conditions hu-
man crowds display equilibrium characteristics, and sub-
sequently, the nature of these characteristics, is valuable
as it can elucidate a clear pathway toward uncovering the
analogous thermodynamic theory governing such crowds.
This finding could pave the way for in-depth investiga-
tion and verification of traditional thermodynamic con-
cepts within the domain of the human crowd. We mo-
tivate our paper with three critical questions. Firstly,
why do human crowds, an inherently non-equilibrium
system, exhibit characteristics consistent with thermo-
dynamic equilibrium? Secondly, what state variable can
reliably indicate the manifestation of equilibrium behav-
ior within a crowd? Lastly, can we formulate an equation
of state for such crowds?

In this paper, we reveal that human crowds tend to-
wards exhibiting equilibrium characteristics, where the
individuals’ fluctuation velocity magnitude distribution
conforms to a 2DMaxwell-Boltzmann distribution, as the
collision timescale between each other decreases. This
result is not motion case dependent and holds for dif-
ferent assumed social forces between individuals. Sur-
prisingly, these equilibrium properties can persist even
in the presence of strong self-propulsion for individuals.
In addition, we show that there is a power law relation-
ship between collision time scale and pressure, suggest-
ing that higher pressure indicates equilibrium behavior
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within human crowds. Under high pressure, we reveal
that the translational degrees of freedom (d.o.f.) follows
the equipartition theorem. The equilibrium characteris-
tics of the human crowd system directly imply the ideal
gas law for crowds. To demonstrate the predictive abil-
ity of the ideal gas law, we collected 102 hours of video
of dense crowd observational data on YouTube.com that
were filmed from a suitably high position [19]. We find
that we can predict the pressure very well in all the video
data. In addition, we drive a crowd in a thermodynamic
cycle in a crowd model and demonstrate the predictabil-
ity of the ideal gas law for human crowds under high
pressure.

Our results are organized as follows. In Sec. II, we
present the data used for our study, detailing our experi-
mental data and the models we employed. We show that
the crowd exhibits equilibrium characteristics as the col-
lision time scale decrease for all experimental and mod-
eling data. In Sec. III, we explain why human crowds
can sometimes exhibit equilibrium characteristics and re-
veal that human crowds exhibit equilibrium characteris-
tics when pressure is high. Moreover, we reveal that hu-
man crowds under high pressure follow the equipartition
theorem. We establish and verify the ideal gas law of
crowds with high pressure in Sec. IV. Lastly, we con-
clude our paper in Sec. V.

II. EXPERIMENTAL AND MODELING DATA

We first describe the experimental and modeling
data for this paper. We use both experiments and
agent-based modeling to show that the individuals’
fluctuation velocity magnitude distribution becomes
more similar to the 2D Maxwell-Boltzmann distribution

(f(∥v′∥) = 2∥v′∥
kBT e

− ∥v′∥2
kBT ) as the collision time scale (tc =

1/(2ρr⟨∥v′∥⟩)) between individuals decreases, where ⟨⟩
indicates ensemble mean, and ∥∥ is the L2 norm, ρ is
crowd density, r is the mean distance between individu-
als and v′ is the fluctuation velocity. We used bottleneck
and unidirectional cases with large population densities.

A. Experimental Data

For experiments, we utilize the data from evacuation
experiments carried out by Feliciani et al. [21] and uni-
directional flow executed by Cao et al. [22]. Seven cases
in bottleneck evacuation experiments and nine cases in
unidirectional flow experiments were analyzed. The data
sets consist of videos and corresponding individual’s tra-
jectories. Based on trajectories, velocity time series
can be derived via a Gaussian derivative kernel. Gaus-
sian derivative kernels were widely used in experimen-
tal research of Lagrangian turbulence to filter out high-
frequency noise while taking derivative [23–25]. After
applying Gaussian derivative kernels, smoothed velocity

FIG. 1. (a) The bottleneck and unidirectional flow cases sim-
ulated by social distance model [20]. The arrow is the in-
stantaneous velocity. The dashed square is the interrogation
area. Our result holds well for a range of interrogation ar-
eas. (b) PDFs for fluctuation velocity magnitude (blue line)
and the corresponding best fit to a 2D Maxwell-Boltzmann
distribution (black dashed lines). The shaded area represents
the error bar with a 95% confidence interval. (c) Collision
time scale (tc) versus the mean squared error between fluctu-
ation velocity magnitude PDFs and their best 2D Maxwell-
Boltzmann fit. A power law relationship between the tc and
error indicates that the system behaves more like an equilib-
rium system when tc decreases.

along the trajectories is obtained (Supplementary mate-
rials).
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B. Modeling Data

In high-density crowds, the physical interactions be-
tween each body and the simultaneous collective desire
of reaching a point of interest dominate crowd dynamics
and social attributes of pedestrians is minimized. Thus,
we used the Helbing-Molnar model [26] and a social dis-
tance (SD) model [20] for crowd modeling. These models
have been explained in detail elsewhere [10, 20, 26, 27],
and we only introduce this model briefly. The models
assume that there are N individuals i in the crowd with
locations ri(t) and velocities vi(t). Each individual also
has a desired speed vDi and is limited by a maximum
speed vmax

i . The change in an individual’s speed is in-
terpreted as the consequence of the summation of three
major “social forces” on the individual. The individual’s
acceleration is given by

dvi(t)

dt
=

vDi ei(t)− vi(t)

τ
+
∑
j ̸=i

Fij + FiW , (1)

where individuals intend to move in the direction of unit
vector ei(t) with velocity magnitude vDi in absence of
interactions, and τ is the relaxation time. The ei(t) is

defined as ei(t) =
rDi −ri(t)

∥rDi −ri(t)∥
, where rDi is the location

of the desired destination. Fij represents the repulsive
interaction between individual i and j, and FiW describes
the interaction between individual i and the wall. For
interaction between individuals and walls, we have chosen
the function

FiW (riW ) = −∇riWUiW (∥riW ∥), (2)

where UiW is a repulsive monotonic decreasing poten-
tial, and riW = ri − rW with rW defined as the closest
point on the wall to the individual. For the repulsive
potential UiW , we follow the Helbing and Molnar’s form
[26]: UiW (∥riW ∥) = U0

iW e−∥riW ∥/R, where U0
iW and R

are constants.
For the interactions between the particles, we use

Fij(rij) = −∇rijVij(∥rij∥). (3)

The Helbing-Molnar model and social distance
model use different potentials between individuals.
The Helbing-Molnar model uses exponential potential
Vij(∥rij∥) = V 0

ije
−∥rij∥/Ri,j , where V 0

ij and Ri,j are con-
stants, and rij = ri − rj . Social distance model uses
Lennard-Jones-like potential [20]

Vij(∥rij∥) = ϵ((
σ

∥rij∥
)2n − (

σ

∥rij∥
)n), (4)

where ϵ, σ and n are scalar constants. When the
distance between two particles is equal to σ, the inter-
particle potential is zero, and σ is interpreted as the “soft
diameter” of the particle. Moreover, n represents the
“hardness” of spheres; that is, as n increases, the repul-
sive force will increase more sharply when two individuals

get closer. In the context of the crowd model, n repre-
sents individuals’ priority to keep social distance (SD)
over other factors, such as the desire to reach a destina-
tion. As n decreases, individuals tend to have a lower
priority of keeping social distance, and violations of the
prescribed social distance increase. The repulsive force
is scaled by a linear factor ϵ [20].
We simulated both bottleneck and unidirectional flow

cases with both force potentials. In each case, we simu-
lated with vDi = 0.7 m/s and vmax

i = 1.3 × vDi = 0.91
m/s. The pre-factor 1.3 is inherited from previous crowd
literature [26]. For the bottleneck case, we simulate a
crowd of 100 individuals exiting a room of 20 m by 20
m via a door of 0.92 m width. For the unidirectional
flow case, we simulate a crowd of 100 individuals walking
through a 20 m long corridor with a 5 m width.
We used the same parameters for the wall potential

where U0
iW = 10 m2/s2 andR = 0.2 m. As for the Helbing

and Molnar’s potential, the parameters are set as, V 0
i,j =

2.1 m2/s2, Ri,j ∈ [0.2 m, 2.5 m], and τ ∈ [0.5 s, 6.5 s].
Furthermore, we use the following parameters in the so-
cial distance model, ϵ = 3, n = 0.5, σ ∈ [0.2 m, 2.3 m]
and τ ∈ [2.3 s, 7.25 s]. The time step utilized in these
two models is 0.02 s.

III. EQUILIBRIUM CHARACTERISTICS

The instantaneous velocity tells us little about the
interaction between individuals. Instead, we focus on
the individual’s fluctuation velocity. Let us introduce
for each individual i the fluctuation velocity around the
mean is defined as [28, 29]

v′
i(t) = vi(t)−

1

N

N∑
k=1

vk(t), (5)

where vk(t) is the instantaneous velocity, and N is the
number of individuals at time t in the region of interest.
Two snapshots of the instantaneous velocity field

within the interrogation area are shown in Fig. 1 a. In
the selected region, we collect all the individual fluctuat-
ing velocities over time, resulting in a probability density
function (PDF) curve for a single case. In Fig. 1 b,
we plot the PDF of fluctuation velocity magnitude av-
eraged over separated PDF curves from 9 experimental
and hundreds of numerical cases (with SD potential) for
unidirectional flow. For each PDF curve, we fit a se-
ries of 2D Maxwell-Boltzmann distributions. The error
is defined as the mean squared error between the ob-
served PDF curve and the best fit. In Fig. 1 c, we show
that the mean squared error decreases as the collision
time scale decreases for both experimental and modeling
crowds. For the experimental dataset of unidirectional
pedestrian flow, we have nine sets of data, so there are
nine points in the graph, while error bars characterize
the deviation over time. For simulation data, we have
hundreds of cases. For the sake of presentation, we split
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the range of collision timescale into several segments and
computed the mean error and mean collision timescale
for each segment. We find that this result is independent
of the force potential we use in the model and it is also
independent of the motion cases.

A. Equilibrium Characteristics via Canonical
Ensemble

Why does the human crowd, an inherently non-
equilibrium system, exhibit equilibrium characteristics?
We find that the equilibrium characteristic is solely due
to a large collision frequency, i.e., a small tc, which is
the mean free path 1/(2rρ) divided by the mean fluctua-
tion velocity magnitude ⟨∥v′∥⟩. This can be understood
via canonical ensemble [30]. In a crowd system, along
one direction, a focal individual is a system while the
rest of the crowd is the reservoir. With a small colli-
sion time scale, the temperature (T ∝ ⟨v′2⟩) of the sys-
tem is constant over a sufficient amount of collisions. In
addition, collisions between individuals are near elastic
collisions, and the constant collision exchanges energy
between the system and the reservoir, making the prob-
ability of the system kinetic energy along one direction
to be P (Ek) ∝ e−Ek/kBT (see supplementary material).
Using the kinetic theory of gases, we will find that the
fluctuation velocity magnitude follows the 2D Maxwell-
Boltzmann distribution. As the energy exchange between
the system and reservoir is more frequent, the crowd
will behave more similarly to the equilibrium counter-
part (Fig. 1 c).

The collision time scale should be much smaller than
the time scale of the system’s temperature so that a suf-
ficient amount of collision can happen before the system
temperature change, and, thus, one of the assumptions in
the canonical ensemble is fulfilled. On the other hand, if a
crowd system has a temperature that varies too quickly
compared with the collision time scale, the picture of
the canonical ensemble is no longer suitable. Thus, the
crowd system lost its equilibrium characteristics. In our
case, when crowd density is high, the variation of the
temperature is pretty slow, and we will not include the
temperature variation in our discussion.

The fact that the equilibrium characteristic is solely
due to small tc is somewhat surprising. Away from the
wall, conceptually, there are two time scales: τ and tc.
The τ is the time scale for individuals to adjust their ve-
locity toward the desired direction and magnitude that is
shown in the first term on the right-hand side of Eqn. 1.
This is the self-propelling part of the active particle sys-
tem. In other words, individuals are not passively collid-
ing with each other but instead, drive themselves toward
their point of interest. The energy for the self-proportion
comes from other sources, adding kinetic energy to the
system. The self-propelling part drives the system out of
equilibrium. On the other hand, tc is the time scale of
the passive part of the active particle system. Intuitively,

FIG. 2. (a) The power-law relationship between pressure and
tc. The predicted p ∝ t−2

c is shown in the black dashed line.
(b) The pressure of the crowd versus mean squared error be-
tween fluctuation velocity magnitude PDFs and their best 2D
Maxwell-Boltzmann fit. A power law relationship exists be-
tween the pressure and the mean squared error of the fluctua-
tion velocity magnitude PDFs and their optimal 2D Maxwell-
Boltzmann fit. This indicates that the system increasingly
behaves like an equilibrium system as pressure rises. (c) The
total kinetic energy normalized by 1/2kBT as a function of
the number of individuals varied by varying interrogation do-
main sizes and locations. For crowds with high pressure, the
total normalized kinetic energy is well approximated by the
2N (black dashed line), indicating that there are two trans-
lational d.o.f. in the system. Error bars with 95% confidence
interval are shown in the figure.

one may believe that the equilibrium characteristics will
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FIG. 3. (a) Single video frame illustrating a dense crowd with overlaid velocity vectors from PIV [19]. To facilitate comparisons,
the image is not correct for perspective distortions. (b) The measured PDF for fluctuation velocity magnitude from the same
video (blue line) and the best fit to a 2D Maxwell-Boltzmann distribution (black dashed line). The shaded area represents the
error bar with 95% confidence interval. (c) Pressure change in the interrogation domain. Directly measured pressure from PIV
is in the blue line. The pressure prediction from A, N , and kBT is in the red dashed line.

emerge because the passive part of the system overcomes
the self-propelling part of the system and expect that the
equilibrium characteristic will emerge if τ ≫ tc. How-
ever, this is not true. Equilibrium characteristics depend
only on tc and can emerge even the τ/tc ≈ 1 as sug-
gested by our experimental and modeling results. As
our explanation in the previous paragraph suggests, as
long as there is a sufficient amount of collision before sig-
nificant temperature change, the active particle system
will mimic an equilibrium system in the canonical en-
semble fashion, and this is independent τ . Part of the
reason is that we only consider fluctuation velocity. The
self-driven part of the system contributes mainly to the
mean velocity. This also explains why previous research
only found equilibrium characteristics of jammed human
crowds because jammed human crowds have a mean ve-
locity around zero [18]. Our results reveal that, once the
mean flow is removed, the equilibrium characteristics can
exist in crowds even with strong self-propelling forces and
mean flows.

The next natural question is whether there is a state
variable that can be used as an indicator for the emer-
gence of equilibrium characteristics in human crowds.
Since ρ ≈ 1/r2 where r is the average distance between
neighboring individuals, we can rewrite the collision time
scale as tc = 1/(2ρr⟨∥v′∥⟩) ∝ r/⟨∥v′∥⟩. Using the kine-
matic argument, we define the pressure of a crowd as
p = ρ⟨v′2⟩/2 [1, 2]. Similarly, we can rewrite pressure as
p = ρ⟨v′2⟩/2 ∝ ⟨v′2⟩/r2. It is obvious to see that p ∝ t−2

c .
This is true under two conditions. First, individuals are
relatively uniformly distributed (ρ ≈ 1/r2). Second, the
variance of the fluctuation velocity magnitude is not too

large (⟨v′2⟩ ≈ ⟨∥v′∥⟩2), which means that kBT should
not be too large. This power law relationship is con-
firmed by both experimental and modeling results (Fig.
2a). Since there is a power law relationship between tc
and the mean squared error between fluctuation velocity
magnitude PDFs and their best 2D Maxwell-Boltzmann
fit, we know that the mean squared error will also have
a power law relationship with pressure (Fig. 2b). Hence,
high pressure indicates that the crowd system exhibits
equilibrium characteristics.

The expression of p = ρ⟨v′2⟩/2 indicates that the pres-
sure of a crowd is a function of crowd density and the
magnitude of fluctuation velocity. In other words, pres-
sure is a function of crowd density and crowd temper-
ature. The temperature of the crowd cannot vary too
much because of the finite mobility of the individuals.
Hence, the pressure of the crowd is mainly varied by
the density of the crowd. Thus, high pressure is man-
ifested by the high density of the human crowd. This
is consistent with our observation that the equilibrium
characteristics emerge in packed crowd systems.

B. Equipartition

In the context of equilibrium thermodynamics, for in-
stance, the temperature of a system is intricately linked
to the number of d.o.f. through the concept of equipar-
tition, whereby each d.o.f. contributes an energy of
1/2kBT . For both experiments and modeling, we can
write the kinetic energy as Ek(t) = v′2/2. We demon-
strate that at high pressure, both experiments and mod-
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eling with different boundary conditions and force poten-
tials show that the equipartition holds very well for ki-
netic energy for different numbers of individuals N . The
slope of the 2Ek/(kBT ) is well approximated as 2N , in-
dicating that each individual has two translational d.o.f.
Our results indicate that human crowds under large pres-
sure also follow the equipartition theorem.

Unlike the classical counterpart, i.e., the ideal gas,
our system also stores potential energy. We can
only calculate potential energy for the simulation sys-
tem because the potential functions between individ-
uals are unknown in experiments. While we can’t
calculate potential energy for experimental systems
due to unknown potential functions between individ-
uals, for simulations, we can write potential energy

Ep(t) = limT→∞
1
T

∫ T

0
dt[ 12

∑
i ̸=j Vij(∥rij∥)]. We find

that the potential energy does not follow the equipar-
tition theorem and is much larger than the kinetic en-
ergy. This observation is not unexpected. As the sys-
tem has a high density and both exponential potential
(Vij(∥rij∥) = V 0

ije
−∥rij∥/Ri,j ) and Lennard-Jones-like po-

tential (Vij(∥rij∥) = ϵ(( σ
∥rij∥ )

2n − ( σ
∥rij∥ )

n)) reveals that

the potential energy increase as distances between indi-
viduals decrease, the packed system will have very large
potential energy associated with each individual.

We want to comment on the similarity and difference
between high-pressure crowds and their classical counter-
parts. The similarity lies in the fact that the Maxwell-
Boltzmann distribution, which describes the velocities
of individual particles, arises from a canonical ensem-
ble setup where each particle (or agent in the crowd) is
treated as a system in thermal equilibrium with the rest
of the particles that act as a reservoir. Energy trans-
fer between the system and the reservoir occurs through
interactions between particles, which may include colli-
sions or other forms of interaction. Despite these individ-
ual energy changes, the overall energy distribution across
all systems adheres to the Maxwell-Boltzmann statistics.
This distribution is the most probable macrostate un-
der the assumption of equal a priori probabilities for all
accessible microstates, a fundamental principle in statis-
tical mechanics.

A significant distinction between these systems lies in
the motion of constituent particles between collisions. In
a traditional gas system, molecules move with constant
velocity along a given direction between collisions, as-
suming the absence of external forces, with their mo-
tion governed by their kinetic energy. These molecules
perpetually move randomly, with their collisions emerg-
ing from this stochastic motion. Conversely, in a crowd
system, the collisions between individuals are a conse-
quence of the densely packed crowd and strong social
forces [20, 26], which effectively results in a small colli-
sion time scale. This key difference in the motion of the
particles between collisions makes the key difference in
the condition for equipartition behavior. In a traditional
gas system, equipartition assumes sparse molecules with
negligible interactions. However, for a human crowd sys-

tem to exhibit equipartition, the individuals are densely
packed and continuously interacting.

IV. THE IDEAL GAS LAW AND IT’S
APPLICATION

A. The Ideal Gas Law as the Equation of State for
Crowd with High Pressure

Given the fact that the individual’s fluctuation veloc-
ity magnitude follows the 2D Maxwell-Boltzmann dis-
tribution, we can analytically integrate the 2D Maxwell-
Boltzmann distribution to evaluate ⟨v′2⟩, and plug it into
the expression of pressure (p = ρ⟨v′2⟩/2). Thus, we de-
rived the two-dimensional equivalent of the ideal gas law
for human crowds subjected to high pressure

pA = NkBT (6)

where A is the area of interest, N is the number of parti-
cles, kB is Boltzmann constant and T is the temperature.
This result is highly nontrivial because it reveals that, un-
der high pressure, human crowds, as an inherently non-
equilibrium system, are governed by an equation of state
mimicking the ideal gas law.
The ideal gas law for human crowds illuminates in-

triguing parallels between high-pressure crowd behaviors
and principles of equilibrium thermodynamics. This per-
spective opens avenues to explore and validate traditional
thermodynamic quantities and laws within the context of
high-pressure human crowds, advancing our understand-
ing of this active matter system. For instance, straight-
forward derivations yield the heat capacity of a high-
pressure crowd at constant area as CA = kBN , and at
constant pressure as CP = 2kBN .

The ideal gas law relates four state variables (p, A, N ,
and T ) and has several important applications, and we
just name a few here. Similar to calculating the num-
ber of gas molecules in stoichiometry, the ideal gas law
for a human crowd can be used to accurately estimate
the number of individuals in an extremely dense crowd,
which is a highly valuable yet challenging task [31, 32].
With the velocity fluctuation information from standard
particle image velocimetry (PIV) analysis [33, 34], one
can easily calculate the number of individuals via ideal
gas law. Second, using an ideal gas law for crowds could
provide a mathematical basis to predict potentially dan-
gerous situations, like stampedes or panics. Previous re-
search has shown that the stampedes are usually pre-
ceded by high pressure in the crowd [2]. For instance,
the ideal gas law reveals that the pressure of the crowd
is inversely proportional to the area given that the tem-
perature and the number of individuals are fixed. This
simply implies that special care should be taken in the
area where contraction happens. In the following section,
we will show the application of the ideal gas law for the
human crowd with high pressures.
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B. Application of the Ideal Gas Law

The ideal gas law offers a powerful way to predict
the state variables. Its efficacy is highlighted through
a variety of video data available on YouTube.com, which
demonstrates its applicability in numerous contexts. Our
findings reveal that the ideal gas law accurately predicts
pressure levels in all instances of high-pressure crowds,
underpinning its versatile applicability. In addition, we
drive a crowd in a thermodynamic cycle in the agent-
based model and predict the system pressure with the
ideal gas law, showing the predicting power of the ideal
gas law.

To demonstrate our ideal gas law, we examined addi-
tional sets of dense human crowd videos on YouTube.com
(Fig. 3), all filmed from an elevated perspective to offer
a top-down view. We find that our model accurately pre-
dicts the pressure for all dense (high-pressure) crowds.

We correct the perspective distortion [35] and use PIV
analysis [33, 34] to measure the 2D velocity fields on an
interpolated grid. Here, we show the PIV result and pres-
sure prediction using the ideal gas law for one of the data
sets. Fig. 3a shows the raw image data with the overlaid
velocity field. This image is not corrected for perspective
distortion to facilitate the visual comparison. We show
that the fluctuation velocity magnitude of the packed sys-
tem also approximates Maxwell-Boltzmann distribution
(Fig. 3b). Using Eqn. 6, we predict the pressure value
based on A, N , and kBT where kBT is gotten from fitting
the fluctuation velocity magnitude’s PDF. We see that
pressure prediction is accurate. For a variety of high-
pressure crowd video data, our ideal gas law consistently
performs well.

The power of the ideal gas law as an equation of state
lies in its ability to describe how state variables change
when some are varied while the system remains in a con-
stant state, such as in the case of an engine [36]. To
demonstrate that our ideal gas law can similarly describe
human crowds, it is necessary to drive them away from
their natural state. We achieve this by simulating a
crowd passing through a long corridor with a variable
width, as depicted in Fig. 4 a. We simulated a corridor
of 400 m in length. The width between 100 m and 300
m is 10 m. The first 100 m and the last 100 m are con-
traction and expansion, respectively. The side walls are

half of a Gaussian function h(x) = A/(
√
2πα)e−

(x−µ)2

2α2

with A = 200, α = 45 m, and µ is 0 or 400 m. The
widest width is 13.55 m. We simulated 3,000 individuals
passing to the right with a periodic boundary condition.
We choose Lennard-Jones-like potential (Eqn. 4) with
ϵ = 3, n = 0.5, and σ = 2.4 m. The analysis focuses on a
convex hull moving from left to right with the mean flow
of the crowd. We initiate a random convex hull enclos-
ing 150 individuals within a 50 m × 5 m region on the
left side. In the next time step, we find the center of the
convex hull based on the new positions of the 150 individ-
uals. Then, we find the nearest 150 individuals around

the center and form a new convex hull. The simulation
ends when the convex hull arrives at the right side of the
corridor.
Given that we do not observe any evidence of a phase

transition, we would expect the ideal gas law to remain
valid throughout the entire cycle. To test this, we used
simulated A, N , and kBT to predict the pressure p. As
shown in Fig. 4 b and c, the predicted pressure closely
matches the simulated data. These results provide com-
pelling evidence that the ideal gas law is a valid equation
of state for human crowds with high pressure.

V. SUMMARY AND DISCUSSION

The present study investigated human crowds as a
form of active matter, where individuals convert internal
energy into motion. Notably, such crowds can display
equilibrium characteristics, analogous to those observed
in the field of thermodynamics. The research aimed to
understand the conditions and reasons that enable hu-
man crowds to exhibit equilibrium characteristics and to
investigate if an equation of state could be formulated for
crowd dynamics.
This study discovered that human crowds tend to ex-

hibit equilibrium characteristics as the collision timescale
between individuals decreases. This was consistently ob-
served across various social forces and motion cases. Re-
markably, it persisted even in the presence of strong self-
propulsion. A power law relationship between collision
timescale and pressure was also found, suggesting that
higher pressure indicated to equilibrium behavior. Fur-
thermore, it was shown that under high pressure, human
crowds followed the equipartition theorem, leading to the
formulation of an ideal gas law for crowds. We demon-
strated the applicability of the ideal gas law to human
crowds through a variety of crowd video data and mod-
eling of a crowd in a thermodynamic cycle.
The findings present a novel perspective on under-

standing human crowds as a form of active matter, show-
ing potential parallels between the behaviors of high pres-
sure crowds and equilibrium thermodynamics. The ideal
gas law application to crowds could be a substantial step
towards a more profound comprehension of crowd dy-
namics under high pressure. First, this paper only de-
fines the pressure kinematically. The future work in-
cludes adding leading order virial terms to define pressure
dynamically. One has to meticulously measure the realis-
tic potential function between individuals and determine
whether the leading order virial term is negligible. In the
case where the virial term is not negligible, it will lead to
a crowd of individuals interacting with a Lennard-Jones
potential to have a van der Waals-like equation of state.
Second, one could further define thermodynamic vari-
ables for human crowds with high pressure. Third, one
could explore the analogous laws in thermodynamics for
the human crowd under high pressure, such as the first
and second laws of thermodynamics. Last, one can study
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FIG. 4. Thermodynamic cycling of the human crowd. (a) A snapshot of the corridor with variable width. (b) The phase
averaged pressure change inside a convex hull along the corridor (blue line) and the pressure prediction via the ideal gas law
(red dots). (c) Phase-averaged pressure-area phase plane behavior while the crowd passes the corridor. The solid lines represent
the hydrodynamic cycle with simulated data, and the red dots are the cycle with the predicted pressure. Totally 10 cycles were
used for phase averaging. Data has also been averaged every 1 s for clarity.

how to apply these laws and defined variables to facili- tate better the efficiency and comfort of the transport of
human crowds.

[1] M. Moussäıd, D. Helbing, and G. Theraulaz, How simple
rules determine pedestrian behavior and crowd disasters,
Proceedings of the National Academy of Sciences 108,
6884 (2011).

[2] D. Helbing, A. Johansson, and H. Z. Al-Abideen, Dy-
namics of crowd disasters: An empirical study, Physical
review E 75, 046109 (2007).

[3] D. Helbing and P. Molnar, Social force model for pedes-
trian dynamics, Physical review E 51, 4282 (1995).

[4] I. D. Couzin and N. R. Franks, Self-organized lane forma-
tion and optimized traffic flow in army ants, Proceedings
of the Royal Society of London. Series B: Biological Sci-
ences 270, 139 (2003).

[5] G. C. Dachner and W. H. Warren, Behavioral dynamics
of heading alignment in pedestrian following, Transporta-
tion Research Procedia 2, 69 (2014).

[6] N. T. Ouellette, Flowing crowds, Science 363, 27 (2019).
[7] T. Vicsek and A. Zafeiris, Collective motion, Physics re-

ports 517, 71 (2012).
[8] M. Isobe, D. Helbing, and T. Nagatani, Experiment, the-

ory, and simulation of the evacuation of a room without
visibility, Physical Review E 69, 066132 (2004).

[9] D. Helbing, M. Isobe, T. Nagatani, and K. Takimoto,
Lattice gas simulation of experimentally studied evacua-
tion dynamics, Physical review E 67, 067101 (2003).

[10] D. Helbing, I. Farkas, and T. Vicsek, Simulating dynam-
ical features of escape panic, Nature 407, 487 (2000).

[11] D. Helbing, I. J. Farkas, and T. Vicsek, Freezing by heat-
ing in a driven mesoscopic system, Physical review letters
84, 1240 (2000).

[12] F. Peruani, T. Klauss, A. Deutsch, and A. Voss-Boehme,
Traffic jams, gliders, and bands in the quest for collec-
tive motion of self-propelled particles, Physical Review
Letters 106, 128101 (2011).

[13] I. Karamouzas, B. Skinner, and S. J. Guy, Universal
power law governing pedestrian interactions, Physical re-
view letters 113, 238701 (2014).

[14] A. Bottinelli, D. T. Sumpter, and J. L. Silverberg, Emer-
gent structural mechanisms for high-density collective
motion inspired by human crowds, Physical review let-
ters 117, 228301 (2016).

[15] N. Bain and D. Bartolo, Dynamic response and hydro-
dynamics of polarized crowds, Science 363, 46 (2019).

[16] H. L. Devereux and M. S. Turner, Environmental path-



9

entropy and collective motion, Physical Review Letters
130, 168201 (2023).

[17] L. Henderson, The statistics of crowd fluids, nature 229,
381 (1971).

[18] J. L. Silverberg, M. Bierbaum, J. P. Sethna, and I. Cohen,
Collective motion of humans in mosh and circle pits at
heavy metal concerts, Physical review letters 110, 228701
(2013).

[19] Over one million videos are available on youtube.com il-
lustrating crowd with high pressure. notable examples in-
clude https://www.youtube.com/watch?v=l-yyr1on66w
(2023).

[20] X. Si and L. Fang, A novel social distance model reveals
the sidewall effect at bottlenecks, Scientific reports 11,
20982 (2021).

[21] C. Feliciani, I. Zuriguel, A. Garcimart́ın, D. Maza, and
K. Nishinari, Systematic experimental investigation of
the obstacle effect during non-competitive and extremely
competitive evacuations, Scientific reports 10, 1 (2020).

[22] S. Cao, A. Seyfried, J. Zhang, S. Holl, and W. Song, Fun-
damental diagrams for multidirectional pedestrian flows,
Journal of Statistical Mechanics: Theory and Experi-
ment 2017, 033404 (2017).

[23] N. Mordant, A. M. Crawford, and E. Bodenschatz, Ex-
perimental lagrangian acceleration probability density
function measurement, Physica D: Nonlinear Phenomena
193, 245 (2004).

[24] N. Mordant, A. M. Crawford, and E. Bodenschatz,
Three-dimensional structure of the lagrangian acceler-
ation in turbulent flows, Physical Review Letters 93,
214501 (2004).

[25] F. Toschi and E. Bodenschatz, Lagrangian properties of
particles in turbulence, Annual Review of Fluid Mechan-
ics 41, 375 (2009).

[26] D. Helbing and P. Molnar, Social force model for pedes-
trian dynamics, Physical review E 51, 4282 (1995).

[27] X. Chen, M. Treiber, V. Kanagaraj, and H. Li, Social
force models for pedestrian traffic–state of the art, Trans-
port reviews 38, 625 (2018).

[28] A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. San-
tagati, F. Stefanini, and M. Viale, Scale-free correlations
in starling flocks, Proceedings of the National Academy
of Sciences 107, 11865 (2010).

[29] X. Chen, X. Dong, A. Be’er, H. L. Swinney, and
H. Zhang, Scale-invariant correlations in dynamic bacte-
rial clusters, Physical review letters 108, 148101 (2012).

[30] S. J. Blundell and K. M. Blundell, Concepts in thermal
physics (Oxford University Press on Demand, 2010).

[31] B. Zhan, D. N. Monekosso, P. Remagnino, S. A. Velastin,
and L.-Q. Xu, Crowd analysis: a survey, Machine Vision
and Applications 19, 345 (2008).

[32] H. Idrees, I. Saleemi, C. Seibert, and M. Shah, Multi-
source multi-scale counting in extremely dense crowd im-
ages, in Proceedings of the IEEE conference on computer
vision and pattern recognition (2013) pp. 2547–2554.

[33] W. Thielicke and R. Sonntag, Particle image velocimetry
for matlab: Accuracy and enhanced algorithms in pivlab,
j. open res. softw., 9 (2021).

[34] W. Thielicke and E. J. Stamhuis, Pivlab-time-resolved
digital particle image velocimetry tool for matlab, Pub-
lished under the BSD license, programmed with MAT-
LAB 7, R14 (2014).

[35] C. Py, E. de Langre, B. Moulia, and P. Hémon, Mea-
surement of wind-induced motion of crop canopies from
digital video images, Agricultural and forest meteorology
130, 223 (2005).

[36] M. Sinhuber, K. van der Vaart, Y. Feng, A. M. Reynolds,
and N. T. Ouellette, An equation of state for insect
swarms, Scientific Reports 11, 3773 (2021).


